Introduction to Constraint Programming

Fatih Cavdur
Constraint Programming

- Formulate the model using a variety of constraint types.
- Find the feasible solutions that satisfy all constraints.
- Search for the optimal solution.
Example: Suppose that we have the four variables, \(x_1, x_2, x_3, x_4 \), with their domains

\[
\begin{align*}
 x_1 &\in \{1,2\} \\
 x_2 &\in \{1,2\} \\
 x_3 &\in \{1,2,3\} \\
 x_4 &\in \{1,2,3,4,5\}
\end{align*}
\]
We also have the following constraints.

\[x_i \neq x_j, \quad i \neq j \]

\[x_1 + x_3 = 4 \]
Domain Reduction & Constraint Propagation

Since \(x_1 \in \{1,2\} \) and \(x_2 \in \{1,2\} \), the first constraint \(x_i \neq x_j, \ i \neq j \) implies that

\[x_3 \in \{3\} \]

It then implies again

\[x_4 \in \{4,5\} \]
We can then write,

\[x_1 \in \{1\} \]
\[x_2 \in \{2\} \]
\[x_3 \in \{3\} \]
\[x_4 \in \{4,5\} \]
Example Constraints

The “All-Different” Constraint

\[\text{all-different} \left(y_1, y_2, \ldots, y_n \right) \]

The “Element” Constraint

\[\text{element} \left(y, [c_1, c_2, \ldots, c_n], z \right) \]
Assignment Problem

\[
\min z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}
\]

\[
\sum_{i=1}^{n} x_{ij} = 1, \quad \forall j
\]

\[
\sum_{j=1}^{n} x_{ij} = 1, \quad \forall i
\]

\[
x_{ij} \in \{0,1\}
\]
Assignment Problem

If we define y_i as the task assigned to person i, we can write

$$\min z = \sum_{i=1}^{n} z_i$$

element $(y_i, [c_{i1}, c_{i2}, \ldots, c_{in}], z_i)$, $i = 1, \ldots, n$

all-different (y_1, y_2, \ldots, y_n)

$y_i \in \{1, \ldots, n\}$, $i = 1, \ldots, n$
using CP;

int nbPerm = ...;
range r = 1..nbPerm;
int dist[r][r] = ...;
int flow[r][r] = ...;

execute{
 cp.param.timeLimit=30;
}

dvar int perm[1..nbPerm] in r;

dexpr int cost[i in r][j in r] =
 dist[i][j]*flow[perm[i]][perm[j]];

minimize sum(i in r, j in r) cost[i][j];
subject to {
 allDifferent(perm);
};
The End

Questions?