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Local and Global Optimum

Definition
Consider the problem of minimizing f (x) over Rn, and let x̄ ∈ Rn.
If f (x) ≥ f (x̄) for all x ∈ Rn, x̄ is called a global minimum.
If there exists an ε-neighborhood Nε(x̄) around x̄ such that
f (x) ≥ f (x̄) for each x ∈ Nε(x̄) , x̄ is called a local minimum, while
if f (x) < f (x̄) for all x ∈ Nε(x̄), x 6= x̄, for some ε > 0, x̄ is called a
strict local minimum.
Clearly, a global minimum is also a local minimum.

Necessary Optimality Conditions

Theorem
Suppose that f : Rn → R is differentiable at x̄. If there is a vector
d such that ∇f (d̄)td < 0, there exists a δ > 0 such that
f (x̄ + λd) < f (x̄) for each δ ∈ (0, δ), so that d is a descent
direction of f at x̄.

Corollary

Suppose that f : Rn → R is differentiable at x̄. If x̄ is a local
minimum, ∇f (x̄) = 0.



Necessary Optimality Conditions

Theorem
Suppose that f : Rn → R is twice differentiable at x̄. If x̄ is a local
minimum, ∇f (x̄) = 0 and H(x̄) is positive semidefinite.

Sufficient Optimality Conditions

Theorem
Suppose that f : Rn → R is twice differentiable at x̄. If ∇f (x̄) = 0
and H(x̄) is positive, x̄ is a strict local minimum.



Sufficient Optimality Conditions

Theorem
Let f : Rn → R be pseudoconvex at x̄. Then x̄ is a global
minimum if and only if ∇f (x̄) = 0.

Sufficient Optimality Conditions

Theorem
Let f : Rn → R be infinitely differentiable univariate function.
Then x̄ ∈ R is a local minimum if and only if either f (j)(x̄) = 0 for
all j = 1, 2, . . . or else there exists a even n ≥ 2 such that
f (n)(x̄) > 0 while f (j)(x̄) = 0 for all 1 ≤ j < n.



Optimality Conditions

Theorem
Consider the problem to minimize f (x) subject to x ∈ S where
f : Rn → R and S is a nonempty set in Rn. Suppose that f is
differentiable at x ∈ S . If x̄ is a local optimal solution, F0 ∩D = ∅,
where F0 = {d : ∇f (x̄)td < 0} and D is the cone of feasible
directions of S at x̄. Conversely, suppose that F0 ∩ D = ∅, f is
pseudoconvex at x̄, and that there exists an ε-neighborhood Nε(x̄),
ε > 0, such that d = (x− x̄) ∈ D for any x ∈ S ∩ Nε(x̄). Then x̄ is
a local minimum of f .

Optimality Conditions

Theorem
Consider problem P to minimize f (x) subject to x ∈ X and
gi (x) ≤ 0 for i = 1, . . . ,m, where X is a nonempty set in Rn,
f : Rn → R and gi : Rn → R for i = 1, . . . ,m. Let x̄ be a feasible
point, and denote I = {i : gi (x̄) = 0}. Furthermore, suppose that
f and gi for i ∈ I are differentiable at x̄ and that gi for i /∈ I are
continuous at x̄. If x̄ is a local optimal solution, F0 ∩ G0 = ∅,
where F0 = {d : ∇f (x̄)td < 0} and
G0 = {d : ∇gi (x̄)td < 0, ∀i ∈ I}. Conversely, if F0 ∩ G0 = ∅, and if
f is pseudoconvex at x̄ and gi , i ∈ I , are strictly pseudoconvex
over some ε-neighborhood of x̄, x̄ is a local minimum.



Fritz-John Necessary Conditions

Theorem: Fritz-John Necessary Conditions

Consider problem P to minimize f (x) subject to x ∈ X and
gi (x) ≤ 0 for i = 1, . . . ,m, where X is a nonempty set in Rn,
f : Rn → R and gi : Rn → R for i = 1, . . . ,m. Let x̄ be a feasible
point, and denote I = {i : gi (x̄) = 0}. Furthermore, suppose that
f and gi for i ∈ I are differentiable at x̄ and that gi for i /∈ I are
continuous at x̄.

Fritz-John Necessary Conditions

Theorem: Fritz-John Necessary Conditions (cont.)

If x̄ is a local optimal solution, there exists scalars u0 and ui , for
i ∈ I such that

u0∇f (x̄) +
∑
i∈I

ui∇gi (x̄) = 0

u0, ui ≥ 0, ∀i ∈ I

(u0,uI ) 6= (0, 0)



Fritz-John Necessary Conditions

Theorem: Fritz-John Necessary Conditions (cont.)

Furthermore, gi for i /∈ I are differentiable at x̄, the foregoing
conditions can be written in the following equivalent form:

u0∇f (x̄) +
∑
i∈I

ui∇gi (x̄) = 0

uigi (x̄) = 0, ∀i ∈ I

u0, ui ≥ 0, ∀i ∈ I

(u0,uI ) 6= (0, 0)

Fritz-John Sufficient Conditions

Theorem: Fritz-John Sufficient Conditions
Consider problem P to minimize f (x) subject to x ∈ X and
gi (x) ≤ 0 for i = 1, . . . ,m, where X is a nonempty set in Rn,
f : Rn → R and gi : Rn → R for i = 1, . . . ,m. Let x̄ be an FJ
solution, and denote I = {i : gi (x̄) = 0}. Define S as the relaxed
feasible region for problem P in which the nonbinding constraints
are dropped.



Fritz-John Sufficient Conditions

Theorem: Fritz John Sufficient Conditions (cont.)

If there exists an ε-neighborhood Nε(x̄), ε > 0, such that f is
pseudoconvex over Nε(x̄) ∩ S , x̄ is a local minimum for Problem P.

Fritz-John Sufficient Conditions

Theorem: Fritz John Sufficient Conditions (cont.)

If f is pseudoconvex at x̄, and if gi , i ∈ I are both strictly
pseudoconvex and quasiconvex at x̄, x̄ is a global optimal solution
for Problem P. In particular, if these generalized convexity
assumptions hold true only by restricting the domain of f to Nε(x̄)
for some ε > 0, x̄ is a local minimum for Problem P.



KKT Necessary Conditions

Theorem: KKT Necessary Conditions

Consider problem P to minimize f (x) subject to x ∈ X and
gi (x) ≤ 0 for i = 1, . . . ,m, where X is a nonempty set in Rn,
f : Rn → R and gi : Rn → R for i = 1, . . . ,m. Let x̄ be a feasible
point, and denote I = {i : gi (x̄) = 0}. Furthermore, suppose that
f and gi for i ∈ I are differentiable at x̄ and that gi for i /∈ I are
continuous at x̄. Furthermore, suppose that ∇gi (x̄) for i ∈ I are
linearly independent.

KKT Necessary Conditions

Theorem: KKT Necessary Conditions (cont.)

If x̄ is a local optimal solution, there exists scalars ui , for i ∈ I such
that

∇f (x̄) +
∑
i∈I

ui∇gi (x̄) = 0

ui ≥ 0, ∀i ∈ I



KKT Necessary Conditions

Theorem: KKT Necessary Conditions (cont.)

Furthermore, gi for i /∈ I are differentiable at x̄, the foregoing
conditions can be written in the following equivalent form:

∇f (x̄) +
∑
i∈I

ui∇gi (x̄) = 0

uigi (x̄) = 0, ∀i ∈ I

ui ≥ 0, ∀i ∈ I

KKT Sufficient Conditions

Theorem: KKT Sufficient Conditions
Consider problem P to minimize f (x) subject to x ∈ X and
gi (x) ≤ 0 for i = 1, . . . ,m, where X is a nonempty set in Rn,
f : Rn → R and gi : Rn → R for i = 1, . . . ,m. Let x̄ be a KKT
solution, and denote I = {i : gi (x̄) = 0}. Define S as the relaxed
feasible region for problem P in which the nonbinding constraints
are dropped.



KKT Sufficient Conditions

Theorem: KKT Sufficient Conditions (cont.)

If there exists an ε-neighborhood Nε(x̄), ε > 0 such that f is
pseudoconvex over Nε(x̄) ∩ S and gi , i ∈ I , are differentiable at x̄
and are quasiconvex over Nε(x̄) ∩ S , x̄ is a local minimum for
Problem P.

KKT Sufficient Conditions

Theorem: KKT Sufficient Conditions (cont.)

If f is pseudoconvex at x̄, and if gi , i ∈ I are differentiable and
quasiconvex at x̄, x̄ is a global optimal solution for Problem P. In
particular, if this assumption holds true with the domain of the
feasible restriction to Nε(x̄) for some ε > 0, x̄ is a local minimum
for Problem P.



Problems with Equality Constraints

I Problems with Inequality Constraints

I FC Necessary Conditions

I FC Sufficient Conditions

I KKT Necessary Conditions

I KKT Sufficient Conditions

Second-Order NOC and SOC for Constrained Problems

I Second Order Conditions

I KKT Second-Order Sufficient Conditions

I KKT Second-Oder Necessary Conditions
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