Convex Analysis - Convex Functions

Nonlinear Programming

Fatih Cavdur
to accompany
Nonlinear Programming
by Mokhtar S. Bazara, Hanif D. Sherali and C. M. Shetty

Definitions and Basic Properties

Subgradients of Convex Functions

Differentiable Convex Functions

Minima and Maxima of Convex Functions

Generalizations of a Convex Function

Summary

Definitions and Basic Properties

Definition

Let $f: S \rightarrow R$, where S is a nonempty convex set in R^{n}. The function is said to be convex on S if

$$
f\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}\right) \leq \lambda f\left(\mathbf{x}_{\mathbf{1}}\right)+(1-\lambda) f\left(\mathbf{x}_{2}\right)
$$

for each $\mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and for each $\lambda \in(0,1)$.
The function f is called strictly convex on S if the above inequality is true as a strict inequality for each distinct \mathbf{x}_{1} and \mathbf{x}_{2} in S and for each $\lambda \in(0,1)$.
The function $f: S \rightarrow R$ is called concave (strictly concave) on S if $-f$ is convex (strictly convex) on S.
A function is both convex and concave if and only if it is affine.

Definitions and Basic Properties

Lemma
Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$ be a convex function. Then the level set $S_{\alpha}=\{\mathbf{x} \in S: f(\mathbf{x} \leq \alpha\}$, where α is a real number, is a convex set.

Definitions and Basic Properties

Proof
Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in S_{\alpha}$. Thus, $\mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and $f\left(\mathbf{x}_{1}\right) \leq \alpha$ and $f\left(\mathbf{x}_{2}\right) \leq \alpha$. Now let $\lambda \in(0,1)$ and $\mathbf{x}=\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}$. By the convexity of S, we have that $\mathbf{x} \in S$. Furthermore, by the convexity of f,

$$
f(\mathbf{x}) \leq \lambda f\left(\mathbf{x}_{1}\right)+(1-\lambda) f\left(\mathbf{x}_{2}\right) \leq \lambda \alpha+(1-\lambda) \alpha=\alpha
$$

Hence, $\mathbf{x} \in S_{\alpha}$, and therefore, S_{α} is convex.

Continuity of Convex Functions

An important property of convex and concave functions is that they are continuous on the interior on their domain.

Theorem
Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$ be convex. Then f is continuous on the interior of S.

Directional Derivative of Convex Functions

Definition

Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$. Let $\overline{\mathbf{x}} \in S$ and \mathbf{d} be a nonzero vector such that such that $\overline{\mathbf{x}}+\lambda \mathbf{d} \in S$ for $\lambda>0$ and sufficiently small. The directional derivative of f at $\overline{\mathbf{x}}$ along the vector \mathbf{d}, denoted by $f^{\prime}(\overline{\mathbf{x}} ; \mathbf{d})$, is given by the following limit if it exists:

$$
f^{\prime}(\overline{\mathbf{x}} ; \mathbf{d})=\lim _{\lambda \rightarrow 0^{+}} \frac{f(\overline{\mathbf{x}} ; \mathbf{d})-f(\overline{\mathbf{x}})}{\lambda}
$$

Directional Derivative of Convex Functions

Lemma

Let $f: R^{n} \rightarrow R$ be a convex function. Consider any point $\overline{\mathbf{x}} \in R^{n}$ and a nonzero direction $\mathbf{d} \in R^{n}$. Then the directional derivative $f^{\prime}(\overline{\mathbf{x}} ; \mathbf{d})$, of f at $\overline{\mathbf{x}}$ in the direction \mathbf{d}, exists.

Directional Derivative of Convex Functions

Lemma

Let $f: R^{n} \rightarrow R$ be a convex function. Consider any point $\overline{\mathbf{x}} \in R^{n}$ and a nonzero direction $\mathbf{d} \in R^{n}$. Then the directional derivative $f^{\prime}(\overline{\mathbf{x}} ; \mathbf{d})$, of f at $\overline{\mathbf{x}}$ in the direction \mathbf{d}, exists.

Epigraph and Hypograph of a Function

Definition

A function f on S can be fully described by the set
$\{[\mathbf{x}, f(\mathbf{x})]: \mathbf{x} \in S\} \subset R^{n+1}$, which is referred to as the graph of the function. One can construct two sets that are related to the graph of f :

1. the epigraph, which consists of points above the graph of f
2. the hypograph, which consists of points below the graph of f

Epigraph and Hypograph of a Function

Definition

Let S be a nonempty set in R^{n}, and let $f: S \rightarrow R$. The epigraph of f, denoted by epi f, is a subset of R^{n+1} defined by

$$
\{(\mathbf{x}, y): \mathbf{x} \in S, y \in R, y \geq f(\mathbf{x})\}
$$

The hypograph of f, denoted by hyp f, is a subset of R^{n+1} defined by

$$
\{(\mathbf{x}, y): \mathbf{x} \in S, y \in R, y \leq f(\mathbf{x})\}
$$

Epigraph and Hypograph of a Function

Theorem

Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$. Then f is convex if and only if epi f is a convex set.

Subgradient of a Function

Definition

Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$ be convex. Then ξ is called a subgradient of f at $\overline{\mathrm{x}}$ if

$$
f(\mathbf{x}) \geq f(\overline{\mathbf{x}})+\xi^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

Similarly, let $f: S \rightarrow R$ be concave. Then ξ is called a subgradient of f at $\overline{\mathbf{x}}$ if

$$
f(\mathbf{x}) \leq f(\overline{\mathbf{x}})+\xi^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

Subgradient of a Function

Definition

Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$ be convex. Then ξ is called a subgradient of f at $\overline{\mathrm{x}}$ if

$$
f(\mathbf{x}) \geq f(\overline{\mathbf{x}})+\xi^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

Similarly, let $f: S \rightarrow R$ be concave. Then ξ is called a subgradient of f at $\overline{\mathbf{x}}$ if

$$
f(\mathbf{x}) \leq f(\overline{\mathbf{x}})+\xi^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

Subgradient of a Function

Definition

Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$ be convex. Then for $\overline{\mathbf{x}} \in \operatorname{int}(S)$, there exists a vector ξ such that the hyperplane

$$
H=\left\{(\mathbf{x}, y): y=f(\mathbf{x})+\xi^{t}(\mathbf{x}-\overline{\mathbf{x}}\}\right.
$$

supports epi f at $[\overline{\mathbf{x}}, f(\overline{\mathbf{x}})]$. In particular,

$$
f(\mathbf{x}) \geq f(\overline{\mathbf{x}})+\xi^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

that is, ξ is a subgradient of f at $\overline{\mathbf{x}}$.

Subgradient of a Function

Corollary
Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$ be strictly convex. Then for $\overline{\mathbf{x}} \in \operatorname{int}(S)$, there exists a vector ξ such that

$$
f(\mathbf{x})>f(\overline{\mathbf{x}})+\xi^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

Subgradient of a Function

Theorem

Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$.
Suppose that for each point $\overline{\mathrm{x}} \in \operatorname{int} S$ there exists a subgradient vector ξ such that

$$
f(\mathbf{x}) \geq f(\overline{\mathbf{x}})+\xi^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

Then, f is convex on int S.

Differentiable Functions

Definition

Let S be a nonempty set in R^{n}, and let $f: S \rightarrow R$. Then f is said to be differentiable at $\overline{\mathbf{x}} \in \operatorname{int} S$ if there exists a vector $\nabla f(\overline{\mathbf{x}})$, called the gradient vector, and a function $\alpha: R^{n} \rightarrow R$ such that

$$
f(\mathbf{x})=f(\overline{\mathbf{x}})+\nabla f\left(\overline{\mathbf{x}}^{t}\right)^{t}(\mathbf{x}-\overline{\mathbf{x}})+\|\mathbf{x}-\overline{\mathbf{x}}\| \alpha(\overline{\mathbf{x}} ; \mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

where $\lim _{\mathrm{x} \rightarrow \overline{\mathrm{x}}} \alpha(\overline{\mathrm{x}} ; \mathbf{x}-\overline{\mathrm{x}})=0$. The function f is said to be differentiable on the open set $S^{\prime} \subseteq S$ if it is differentiable at each point in S^{\prime}. This representation of f is called a first-order Taylor series expansion of f at (or about) the point $\overline{\mathbf{x}}$.

Differentiable Functions

Definition

Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$ be convex. Suppose that f is differentiable at $\overline{\mathbf{x}} \in \operatorname{int} S$. Then the collection of subgradients of f at $\overline{\mathbf{x}}$ is the singleton set $\{\nabla f(\overline{\mathbf{x}})\}$.

Differentiable Functions

Theorem

Let S be a nonempty open convex set in R^{n}, and let $f: S \rightarrow R$ be differentiable on S. Then f is convex if and only if for any $\overline{\mathbf{x}} \in S$, we have

$$
f(\mathbf{x}) \geq f(\overline{\mathbf{x}})+\nabla f(\overline{\mathbf{x}})^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \in S
$$

Similarly, f is strictly convex if and only if, we have

$$
f(\mathbf{x})>f(\overline{\mathbf{x}})+\nabla f(\overline{\mathbf{x}})^{t}(\mathbf{x}-\overline{\mathbf{x}}), \quad \forall \mathbf{x} \neq \overline{\mathbf{x}} \in S
$$

Differentiable Functions

Theorem

Let S be a nonempty open convex set in R^{n}, and let $f: S \rightarrow R$ be differentiable on S. Then f is convex if and only if for each
$\mathbf{x}_{1}, \mathrm{x}_{2} \in S$, we have

$$
\left[\nabla f\left(\mathbf{x}_{2}-\nabla \mathbf{x}_{1}\right)\right]^{t}\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \geq 0
$$

Similarly, f is strictly convex if and only if, for each distinct $\mathbf{x}_{1}, \mathbf{x}_{2} \in S$, we have

$$
\left[\nabla f\left(\mathbf{x}_{2}-\nabla \mathbf{x}_{1}\right)\right]^{t}\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)>0
$$

Twice Differentiable Convex and Concave Functions

Definition

Let S be a nonempty set in R^{n}, and let $f: S \rightarrow R$. Then f is said to be twice differentiable at $\overline{\mathbf{x}} \in \operatorname{int} S$ if there exists a vector $\nabla f(\overline{\mathbf{x}})$, and an $n \times n$ symmetric matrix $\mathbf{H}(\overline{\mathbf{x}})$, called the Hessian matrix, and a function $\alpha: R^{n} \rightarrow R$ such that

$$
f(\mathbf{x})=f(\overline{\mathbf{x}}) \nabla f(\mathbf{x})^{t}(\mathbf{x}-\overline{\mathbf{x}})+\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{t} \mathbf{H}(\overline{\mathbf{x}})(\mathbf{x}-\overline{\mathbf{x}})+\|\mathbf{x}-\overline{\mathbf{x}}\|^{2} \alpha(\overline{\mathbf{x}} ; \mathbf{x}-\overline{\mathbf{x}})
$$

for each $\mathbf{x} \in S$, where $\lim _{\mathrm{x} \rightarrow \overline{\mathbf{x}}} \alpha(\overline{\mathbf{x}} ; \mathbf{x}-\overline{\mathbf{x}})=0$. The function f is said to be twice differentiable on the open set $S^{\prime} \subseteq S$ if it is twice differentiable at each point S^{\prime}.

Twice Differentiable Functions

We can write the foregoing representation as follows, which, without the remainder term, is known as a second-order (Taylor series) approximation at (or about) the point $\overline{\mathbf{x}}$.

$$
\begin{aligned}
f(\mathbf{x}) & =f(\overline{\mathbf{x}})+\sum_{j=1}^{n} f_{j}(\overline{\mathbf{x}})\left(x_{j}-\bar{x}_{j}\right) \\
& +\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right) f_{i j}(\overline{\mathbf{x}}) \\
& +\alpha(\overline{\mathbf{x}} ; \mathbf{x}-\overline{\mathbf{x}})
\end{aligned}
$$

Example

Let $f\left(x_{1}, x_{2}\right)=2 x_{1}+6 x_{2}-2 x_{1}^{2}-3 x_{2}^{2}+4 x_{1} x_{2}$. Then we have,

$$
\nabla f(\overline{\mathbf{x}})=\left[\begin{array}{l}
2-4 \bar{x}_{1}+4 \bar{x}_{2} \\
6-6 \bar{x}_{2}+4 \bar{x}_{1}
\end{array}\right] \text { and } \mathbf{H}(\overline{\mathbf{x}})=\left[\begin{array}{rr}
-4 & 4 \\
4 & -6
\end{array}\right]
$$

For example, taking $\overline{\mathbf{x}}=(0,0)^{t}$, the second-order expansion of this function is given by

$$
f\left(x_{1}, x_{2}\right)=(2,6)\binom{x_{1}}{x_{2}}+\frac{1}{2}\left(x_{1}, x_{2}\right)\left[\begin{array}{rr}
-4 & 4 \\
4 & -6
\end{array}\right]\binom{x_{1}}{x_{2}}
$$

Note that there is no remainder term here since the given function is quadratic, so the above expression is exact.

Differentiable Functions

Let S be a nonempty open convex set in R^{n}, and let $f: S \rightarrow R$ be twice differentiable on S. Then f is convex if and only if the Hessian matrix is positive semidefinite at each point in S; that is, for any $\bar{x} \in S$, we have $\mathbf{x}^{t} \mathbf{H}(\overline{\mathbf{x}}) \mathbf{x} \geq 0$ for all $\mathbf{x} \in R^{n}$.
A function is concave if and only if its Hessian matrix is negative semidefinite (NSD) everywhere in S; that is, for any $\bar{x} \in S$, we have $\mathbf{x}^{t} \mathbf{H}(\overline{\mathbf{x}}) \mathbf{x} \leq 0$ for all $\mathbf{x} \in R^{n}$.
A matrix is that is neither PSD or NSD is called indefinite (ID).

Differentiable Functions

Theorem

Let S be a nonempty open convex set in R^{n}, and let $f: S \rightarrow R$ be twice differentiable on S. Then f is convex if and only if the Hessian matrix is positive semidefinite at each point in S

Differentiable Functions

Theorem

Let S be a nonempty open convex set in R^{n}, and let $f: S \rightarrow R$ be twice differentiable on S. If the Hessian matrix is positive definite (PD) at each point in S, f is strictly convex. Conversely, if f is strictly convex, the Hessian matrix is PSD at each point in S. However, if f is strictly convex and quadratic, its Hessian is PD.

Differentiable Functions

Theorem

Let S be a nonempty open convex set in R^{n}, and let $f: S \rightarrow R$ be infinitely differentiable on S. Then f is strictly convex on S if and only if for each $\bar{x} \in S$, there exists an even n such that $f^{(n)}(\bar{x})>0$, while $f^{(j)}(\bar{x})=0$ for any $1<j<n$.

Differentiable Functions

Theorem

Consider a function $f: R^{n} \rightarrow R$, and for any point $\overline{\mathbf{x}} \in R^{n}$ and a nonzero direction $\mathbf{d} \in R^{n}$, define $F_{(\mathbf{x} ; \mathbf{d})}=f(\overline{\mathbf{x}}+\lambda \mathbf{d})$ as a function of $\lambda \in R$. Then f is (strictly) convex if and only if $F_{\left(\mathrm{x}_{(\mathbf{d})}^{-}\right)}$is (strictly) convex for all $\overline{\mathbf{x}}$ and $\mathbf{d} \neq 0$ in R^{n}.

Minimizing a Convex Function

Definition

Let $f: R^{n} \rightarrow R$ and consider the problem to minimize $f(\mathbf{x})$ subject to $x \in S$.
A point $x \in S$ is called a feasible solution to the problem.
If $\overline{\mathbf{x}} \in S$ and $f(\mathbf{x}) \geq f(\overline{\mathbf{x}})$ for each $\mathbf{x} \in S, \overline{\mathbf{x}}$ is called an optimal solution, a global optimal solution, or a solution to the problem.
The collections of optimal solutions are called alternative optimal solutions.
If $\overline{\mathbf{x}} \in S$ and there exists an ϵ-neighborhood $N_{\epsilon}(\overline{\mathbf{x}})$ around $\overline{\mathbf{x}}$ such that $f(\mathbf{x}) \geq f(\overline{\mathbf{x}})$ for each $\mathbf{x} \in S \cap N_{\epsilon}(\overline{\mathbf{x}}), \overline{\mathbf{x}}$ is called a local optimal solution.

Minimizing a Convex Function

Theorem

Let S be a nonempty convex set in R^{n}, and let $f: S \rightarrow R$ be convex on S. Consider the problem to minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$. Suppose that $\overline{\mathbf{x}} \in S$ is a local optimal solution to the problem. Then, $\overline{\mathrm{x}}$ is a global solution.
If either $\overline{\mathbf{x}}$ is a strict local minimum or f is strictly convex, $\overline{\mathbf{x}}$ is the unique global optimal solution and is also a strong local minimum.

Minimizing a Convex Function

Theorem

Let $f: R^{n} \rightarrow R$ be a convex function, and let S be a nonempty convex set in R^{n}. Consider the problem to minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$. The point $\overline{\mathbf{x}} \in S$ is an optimal solution to problem if and only if it has a subgradient ξ at $\overline{\mathbf{x}}$ such that $\xi(\mathbf{x}-\overline{\mathbf{x}}) \geq 0$ for all $x \in S$.

Minimizing a Convex Function

Theorem

Consider the problem to minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$, where f is a convex and twice differentiable function and S is a convex set, and suppose that there exists an optimal solution $\overline{\bar{x}}$. Then the set of alternative optimal solutions is characterized by the set

$$
S^{*}=\left\{\mathbf{x} \in S: \nabla f(\overline{\mathbf{x}})^{t}(\mathbf{x}-\overline{\mathbf{x}}) \leq 0 ; \nabla f(\mathbf{x})=\nabla f(\overline{\mathbf{x}})\right\}
$$

Maximizing a Convex Function

Theorem

Let $f: R^{n} \rightarrow R$ be a convex function, and let S be a nonempty convex set in R^{n}. Consider the problem to maximize $f(\mathbf{x})$ subject to $x \in S$. If $\bar{x} \in S$ is a local optimal solution to the problem, $\xi(\mathbf{x}-\overline{\mathbf{x}}) \leq 0$ for all $\mathbf{x} \in S$ where ξ is any subgradient of f at $\overline{\mathbf{x}}$.

Maximizing a Convex Function

Theorem

Let $f: R^{n} \rightarrow R$ be a convex function, and let S be a nonempty compact polyhedral set in R^{n}. Consider the problem to maximize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$. An optimal solution $\overline{\mathbf{x}}$ to the problem exists, where $\overline{\mathbf{x}}$ is an extreme point of S.

Generalizations of a Convex Function

- Quasiconvex (Quasiconcave and Quasimonotone) Functions
- Differentiable Quasiconvex Functions
- Strictly Quasiconvex Functions
- Strongly Quasiconvex Functions
- Pseudoconvex Functions and Its Variants :-)
- Convexity at a Point

Summary

- Definitions and Basic Properties
- Subgradients of Convex Functions
- Differentiable Convex Functions
- Minima and Maxima of Convex Functions
- Generalizations of Convex Functions

Thanks! Questions?

