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Definitions and Basic Properties

Definition
Let f : S → R, where S is a nonempty convex set in Rn. The
function is said to be convex on S if

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

for each x1, x2 ∈ S and for each λ ∈ (0, 1).
The function f is called strictly convex on S if the above inequality
is true as a strict inequality for each distinct x1 and x2 in S and for
each λ ∈ (0, 1).
The function f : S → R is called concave (strictly concave) on S if
−f is convex (strictly convex) on S .
A function is both convex and concave if and only if it is affine.

Definitions and Basic Properties

Lemma
Let S be a nonempty convex set in Rn, and let f : S → R be a
convex function. Then the level set Sα = {x ∈ S : f (x ≤ α},
where α is a real number, is a convex set.



Definitions and Basic Properties

Proof
Let x1, x2 ∈ Sα. Thus, x1, x2 ∈ S and f (x1) ≤ α and f (x2) ≤ α.
Now let λ ∈ (0, 1) and x = λx1 + (1− λ)x2. By the convexity of
S , we have that x ∈ S . Furthermore, by the convexity of f ,

f (x) ≤ λf (x1) + (1− λ)f (x2) ≤ λα + (1− λ)α = α

Hence, x ∈ Sα, and therefore, Sα is convex.

Continuity of Convex Functions

An important property of convex and concave functions is that
they are continuous on the interior on their domain.

Theorem
Let S be a nonempty convex set in Rn, and let f : S → R be
convex. Then f is continuous on the interior of S .



Directional Derivative of Convex Functions

Definition
Let S be a nonempty convex set in Rn, and let f : S → R. Let
x̄ ∈ S and d be a nonzero vector such that such that x̄ + λd ∈ S
for λ > 0 and sufficiently small. The directional derivative of f at
x̄ along the vector d, denoted by f ′(x̄;d), is given by the following
limit if it exists:

f ′(x̄;d) = lim
λ→0+

f (x̄;d)− f (x̄)

λ

Directional Derivative of Convex Functions

Lemma
Let f : Rn → R be a convex function. Consider any point x̄ ∈ Rn

and a nonzero direction d ∈ Rn. Then the directional derivative
f ′(x̄;d), of f at x̄ in the direction d, exists.



Directional Derivative of Convex Functions

Lemma
Let f : Rn → R be a convex function. Consider any point x̄ ∈ Rn

and a nonzero direction d ∈ Rn. Then the directional derivative
f ′(x̄;d), of f at x̄ in the direction d, exists.

Epigraph and Hypograph of a Function

Definition
A function f on S can be fully described by the set
{[x, f (x)] : x ∈ S} ⊂ Rn+1, which is referred to as the graph of the
function. One can construct two sets that are related to the graph
of f :

1. the epigraph, which consists of points above the graph of f

2. the hypograph, which consists of points below the graph of f



Epigraph and Hypograph of a Function

Definition
Let S be a nonempty set in Rn, and let f : S → R. The epigraph
of f , denoted by epi f , is a subset of Rn+1 defined by

{(x, y) : x ∈ S , y ∈ R, y ≥ f (x)}

The hypograph of f , denoted by hyp f , is a subset of Rn+1 defined
by

{(x, y) : x ∈ S , y ∈ R, y ≤ f (x)}

Epigraph and Hypograph of a Function

Theorem
Let S be a nonempty convex set in Rn, and let f : S → R. Then f
is convex if and only if epi f is a convex set.



Subgradient of a Function

Definition
Let S be a nonempty convex set in Rn, and let f : S → R be
convex. Then ξ is called a subgradient of f at x̄ if

f (x) ≥ f (x̄) + ξt(x− x̄), ∀x ∈ S

Similarly, let f : S → R be concave. Then ξ is called a subgradient
of f at x̄ if

f (x) ≤ f (x̄) + ξt(x− x̄), ∀x ∈ S

Subgradient of a Function

Definition
Let S be a nonempty convex set in Rn, and let f : S → R be
convex. Then ξ is called a subgradient of f at x̄ if

f (x) ≥ f (x̄) + ξt(x− x̄), ∀x ∈ S

Similarly, let f : S → R be concave. Then ξ is called a subgradient
of f at x̄ if

f (x) ≤ f (x̄) + ξt(x− x̄), ∀x ∈ S



Subgradient of a Function

Definition
Let S be a nonempty convex set in Rn, and let f : S → R be
convex. Then for x̄ ∈ int(S), there exists a vector ξ such that the
hyperplane

H = {(x, y) : y = f (x) + ξt(x− x̄}

supports epi f at [x̄, f (x̄)]. In particular,

f (x) ≥ f (x̄) + ξt(x− x̄), ∀x ∈ S

that is, ξ is a subgradient of f at x̄.

Subgradient of a Function

Corollary

Let S be a nonempty convex set in Rn, and let f : S → R be
strictly convex. Then for x̄ ∈ int(S), there exists a vector ξ such
that

f (x) > f (x̄) + ξt(x− x̄), ∀x ∈ S



Subgradient of a Function

Theorem
Let S be a nonempty convex set in Rn, and let f : S → R.
Suppose that for each point x̄ ∈ intS there exists a subgradient
vector ξ such that

f (x) ≥ f (x̄) + ξt(x− x̄), ∀x ∈ S

Then, f is convex on intS .

Differentiable Functions

Definition
Let S be a nonempty set in Rn, and let f : S → R. Then f is said
to be differentiable at x̄ ∈ intS if there exists a vector ∇f (x̄),
called the gradient vector, and a function α : Rn → R such that

f (x) = f (x̄) +∇f (x̄t)t(x− x̄) + ||x− x̄||α(x̄; x− x̄), ∀x ∈ S

where limx→x̄ α(x̄; x− x̄) = 0. The function f is said to be
differentiable on the open set S ′ ⊆ S if it is differentiable at each
point in S ′. This representation of f is called a first-order Taylor
series expansion of f at (or about) the point x̄.



Differentiable Functions

Definition
Let S be a nonempty convex set in Rn, and let f : S → R be
convex. Suppose that f is differentiable at x̄ ∈ intS . Then the
collection of subgradients of f at x̄ is the singleton set {∇f (x̄)}.

Differentiable Functions

Theorem
Let S be a nonempty open convex set in Rn, and let f : S → R be
differentiable on S . Then f is convex if and only if for any x̄ ∈ S ,
we have

f (x) ≥ f (x̄) +∇f (x̄)t(x− x̄), ∀x ∈ S

Similarly, f is strictly convex if and only if, we have

f (x) > f (x̄) +∇f (x̄)t(x− x̄), ∀x 6= x̄ ∈ S



Differentiable Functions

Theorem
Let S be a nonempty open convex set in Rn, and let f : S → R be
differentiable on S . Then f is convex if and only if for each
x1, x2 ∈ S , we have

[∇f (x2 −∇x1)]t(x2 − x1) ≥ 0

Similarly, f is strictly convex if and only if, for each distinct
x1, x2 ∈ S , we have

[∇f (x2 −∇x1)]t(x2 − x1) > 0

Twice Differentiable Convex and Concave Functions

Definition
Let S be a nonempty set in Rn, and let f : S → R. Then f is said
to be twice differentiable at x̄ ∈ intS if there exists a vector ∇f (x̄),
and an n × n symmetric matrix H(x̄), called the Hessian matrix,
and a function α : Rn → R such that

f (x) = f (x̄)∇f (x)t(x−x̄)+
1

2
(x−x̄)tH(x̄)(x−x̄)+||x−x̄||2α(x̄; x−x̄)

for each x ∈ S , where limx→x̄ α(x̄; x− x̄) = 0. The function f is
said to be twice differentiable on the open set S ′ ⊆ S if it is twice
differentiable at each point S ′.



Twice Differentiable Functions

We can write the foregoing representation as follows, which,
without the remainder term, is known as a second-order (Taylor
series) approximation at (or about) the point x̄.

f (x) = f (x̄) +
n∑

j=1

fj(x̄)(xj − x̄j)

+
1

2

n∑
i=1

n∑
j=1

(xi − x̄i )(xj − x̄j)fij(x̄)

+ α(x̄; x− x̄)

Example

Let f (x1, x2) = 2x1 + 6x2 − 2x2
1 − 3x2

2 + 4x1x2. Then we have,

∇f (x̄) =

[
2− 4x̄1 + 4x̄2

6− 6x̄2 + 4x̄1

]
and H(x̄) =

[
−4 4

4 −6

]
For example, taking x̄ = (0, 0)t , the second-order expansion of this
function is given by

f (x1, x2) = (2, 6)

(
x1

x2

)
+

1

2
(x1, x2)

[
−4 4

4 −6

](
x1

x2

)
Note that there is no remainder term here since the given function
is quadratic, so the above expression is exact.



Differentiable Functions

Let S be a nonempty open convex set in Rn, and let f : S → R be
twice differentiable on S . Then f is convex if and only if the
Hessian matrix is positive semidefinite at each point in S ; that is,
for any x̄ ∈ S , we have xtH(x̄)x ≥ 0 for all x ∈ Rn.
A function is concave if and only if its Hessian matrix is negative
semidefinite (NSD) everywhere in S ; that is, for any x̄ ∈ S , we
have xtH(x̄)x ≤ 0 for all x ∈ Rn.
A matrix is that is neither PSD or NSD is called indefinite (ID).

Differentiable Functions

Theorem
Let S be a nonempty open convex set in Rn, and let f : S → R be
twice differentiable on S . Then f is convex if and only if the
Hessian matrix is positive semidefinite at each point in S



Differentiable Functions

Theorem
Let S be a nonempty open convex set in Rn, and let f : S → R be
twice differentiable on S . If the Hessian matrix is positive definite
(PD) at each point in S , f is strictly convex. Conversely, if f is
strictly convex, the Hessian matrix is PSD at each point in S .
However, if f is strictly convex and quadratic, its Hessian is PD.

Differentiable Functions

Theorem
Let S be a nonempty open convex set in Rn, and let f : S → R be
infinitely differentiable on S . Then f is strictly convex on S if and
only if for each x̄ ∈ S , there exists an even n such that
f (n)(x̄) > 0, while f (j)(x̄) = 0 for any 1 < j < n.



Differentiable Functions

Theorem
Consider a function f : Rn → R, and for any point x̄ ∈ Rn and a
nonzero direction d ∈ Rn, define F(x̄;d) = f (x̄ + λd) as a function
of λ ∈ R. Then f is (strictly) convex if and only if F(x̄;d) is
(strictly) convex for all x̄ and d 6= 0 in Rn.

Minimizing a Convex Function

Definition
Let f : Rn → R and consider the problem to minimize f (x) subject
to x ∈ S .
A point x ∈ S is called a feasible solution to the problem.
If x̄ ∈ S and f (x) ≥ f (x̄) for each x ∈ S , x̄ is called an optimal
solution, a global optimal solution, or a solution to the problem.
The collections of optimal solutions are called alternative optimal
solutions.
If x̄ ∈ S and there exists an ε-neighborhood Nε(x̄) around x̄ such
that f (x) ≥ f (x̄) for each x ∈ S ∩ Nε(x̄) , x̄ is called a local
optimal solution.



Minimizing a Convex Function

Theorem
Let S be a nonempty convex set in Rn, and let f : S → R be
convex on S . Consider the problem to minimize f (x) subject to
x ∈ S . Suppose that x̄ ∈ S is a local optimal solution to the
problem. Then, x̄ is a global solution.
If either x̄ is a strict local minimum or f is strictly convex, x̄ is the
unique global optimal solution and is also a strong local minimum.

Minimizing a Convex Function

Theorem
Let f : Rn → R be a convex function, and let S be a nonempty
convex set in Rn. Consider the problem to minimize f (x) subject
to x ∈ S . The point x̄ ∈ S is an optimal solution to problem if and
only if it has a subgradient ξ at x̄ such that ξ(x− x̄) ≥ 0 for all
x ∈ S .



Minimizing a Convex Function

Theorem
Consider the problem to minimize f (x) subject to x ∈ S , where f
is a convex and twice differentiable function and S is a convex set,
and suppose that there exists an optimal solution x̄. Then the set
of alternative optimal solutions is characterized by the set

S∗ = {x ∈ S : ∇f (x̄)t(x− x̄) ≤ 0;∇f (x) = ∇f (x̄)}

Maximizing a Convex Function

Theorem
Let f : Rn → R be a convex function, and let S be a nonempty
convex set in Rn. Consider the problem to maximize f (x) subject
to x ∈ S . If x̄ ∈ S is a local optimal solution to the problem,
ξ(x− x̄) ≤ 0 for all x ∈ S where ξ is any subgradient of f at x̄.



Maximizing a Convex Function

Theorem
Let f : Rn → R be a convex function, and let S be a nonempty
compact polyhedral set in Rn. Consider the problem to maximize
f (x) subject to x ∈ S . An optimal solution x̄ to the problem exists,
where x̄ is an extreme point of S .

Generalizations of a Convex Function

I Quasiconvex (Quasiconcave and Quasimonotone) Functions

I Differentiable Quasiconvex Functions

I Strictly Quasiconvex Functions

I Strongly Quasiconvex Functions

I Pseudoconvex Functions and Its Variants :-)

I Convexity at a Point
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