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Convex Hulls

In this section, we first introduce the notions of convex sets and
convex hulls. We then demonstrate that any point in the convex
hull of a set S can be represented in terms of n + 1 points in the
set S .

Convex Hulls

Convex Set
A set S is said to be convex if the line segment joining any two
points of the set also belong to the set. In other words, if x1 and
x2 are in S , then λx1 + (1− λ)x2, must also belong to S for each
λ ∈ [0, 1].

Convex Combination
λx1 + (1− λ)x2, where λ ∈ [0, 1], are referred to as convex
combinations of x1 and x2. Inductively, weighted averages of the
form

∑
j λjxj , where

∑
j λj = 1, λj ≥ 0, j = 1, . . . , k , are also

called convex combinations of x1, . . . , xk .



Convex Hulls

Affine Combination
A combination where the non-negativity conditions of λj (λj ≥ 0),
j = 1, . . . , k is dropped is known as an affine combination. That is,∑

j λjxj , where
∑

j λj = 1, j = 1, . . . , k , are called affine
combinations of x1, . . . , xk .

Linear Combination
A combination where λj ∈ R, j = 1, . . . , k is known as a linear
combination. That is,

∑
j λjxj , where λj ∈ R, j = 1, . . . , k , are

called linear combinations of x1, . . . , xk .

Convex Hulls

Lemma
Let S1 and S2 be convex sets in Rn. Then,

I S1 ∩ S2 is convex.

I S1 ⊕ S2 = {x1 + x2, x1 ∈ S1, x2 ∈ S2} is convex.

I S1 	 S2 = {x1 − x2, x1 ∈ S1, x2 ∈ S2} is convex.



Convex Hulls

Definition: Convex Hulls
Let S be an arbitrary set in Rn. The convex hull of S , denoted by
conv(S), is the collection of all all convex combinations of S . In
other words, x ∈ conv(S) if and only if x can be represented as

x =
k∑

j=1

λjxj

k∑
j=1

λj = 1

where k ∈ Z+, λj ≥ 0, ∀j and xj ∈ S ,∀j .

Convex Hulls

We note that conv(S) is the minimal (tightest enveloping) convex
set that contains S .

Lemma
Let S be an arbitrary set in Rn. Then, conv(S) is the smallest
convex set containing S . Indeed, conv(S) is the intersection of all
convex sets containing S .
Similarly, we can define the affine hull of S as the collection of all
affine combinations of points in S . This is the smallest dimensional
affine subspace that contains S . Similarly, the linear hull of S is
the collection of all linear combinations of points in S .



Polytope and Simplex

We can now define a polytope and simplex.

Definition: Polytope and Simplex

The convex hull of a finite number of points x1, . . . , xk+1 is called
a polytope. If x1, . . . , xk+1 are affinely independent, which means
that x2 − x1, . . . , xk+1 − x1 are linearly independent, then
conv(x1, . . . , xk+1), the convex hull of x1, . . . , xk+1, is called a
simplex having vertices x1, . . . , xk+1.

Caratheodory Theorem

By definition, a point in the convex hull of a set can be represented
as a convex combination of a finite number of points in the set.
The following theorem shows that any point x in the convex hull of
a set S can be represented as a convex combination of, at most,
n + 1 points in S . The theorem is trivially true for x ∈ S .



Caratheodory Theorem

Theorem: Caratheodory Theorem

Let S be an arbitrary set in Rn. If x ∈ conv(S), then
x ∈ conv(x1, . . . , xn+1), where x ∈ S for j = 1, . . . , n + 1. In other
words, x can be represented as

x =
n+1∑
j=1

λjxj

n+1∑
j=1

λj = 1

where λj ≥ 0, ∀j and xj ∈ S ,∀j .

Caratheodory Theorem

Proof: Caratheodory Theorem

Give the proof here!



Closure and Interior of a Set

In this section we develop some topological properties of sets in
general and of convex sets in particular. As a preliminary, given a
point x in Rn, an ε-neighborhood around it is the set
Nε(x) = {y : ||y − x|| < ε}. Let us first review the definitions of
closure, interior, and boundary of an arbitrary set in Rn, using the
concept of an ε-neighborhood.

Closure and Interior of a Set

Definition: Closure
Let S be an arbitrary set in Rn. A point x is said to be in the
closure of S , denoted by cl(S), if S ∩ Nε(x) 6= ∅ for every ε > 0.

Definition: Closed Set
If S = cl(S), S is called closed.

Definition: Interior
A point x is said to be in the interior of S , denoted by int(S), if
Nε(x) ⊂ S for some ε > 0.



Closure and Interior of a Set

Definition: Solid Set
A solid set S ⊆ Rn is one having a nonempty interior.

Definition: Open Set

If S = int(S), S is called open.

Definition: Boundary

x is said to be in the boundary of S , denoted by ∂S , if Nε(x)
contains at least one point in S and one point not in S for every
ε > 0.

Closure and Interior of a Set

Definition: Bounded Set
A set S is bounded if it can be contained in a ball of a sufficiently
large radius.

Definition: Compact Set

A compact set is one that is both closed and bounded.

Note that the complement of an open set is a closed set and vice
versa, and the boundary points of any set and its complement are
the same.



Closure and Interior of a Set

I A set S is closed iif it contains all its boundary points.

I The smallest closed set containing S is cl(S) = S ∪ ∂S .

I A set is open iif it does not contain any of its boundary
points, that is, ∂S ∩ S = ∅.

I Clearly, a set may be neither open nor closed, and the only
sets in Rn that are both open and closed are the empty set
and Rn itself.

Closure and Interior of a Set

I Note that any point x ∈ S must be either an interior or a
boundary point of S .

I However, S 6= int(S) ∪ ∂S , since S need not contain its
boundary points.

I We however have int(S) = S − ∂S since int(S) ⊆ S , while
∂S 6= S − int(S) necessarily.



Closure and Interior of a Set

I Note that any point x ∈ S must be either an interior or a
boundary point of S .

I However, S 6= int(S) ∪ ∂S , since S need not contain its
boundary points.

I We however have int(S) = S − ∂S since int(S) ⊆ S , while
∂S 6= S − int(S) necessarily.

Closure and Interior of a Set

Theorem
Let S be a convex set in Rn with a nonempty interior. Let
x1 ∈ cl(S) and x2 ∈ int(S). Then λx1 + (1− λ)x2 ∈ int(S) for
each λ ∈ (0, 1).



Closure and Interior of a Set

Proof
Here is the proof.

Closure and Interior of a Set

Corollary 1

Let S be a convex set. Then int(S) is convex.

Corollary 2

Let S be a convex set with a nonempty interior. Then cl(S) is
convex.



Closure and Interior of a Set

Corollary 3

Let S be a convex set with a nonempty interior. Then
cl(int(S)) = cl(S).

Corollary 4

Let S be a convex set with a nonempty interior. Then
int(cl(S)) = int(S).

Weierstrass’s Theorem

This result relates to the existence of minimizing solution for an
optimization problem.

I We say that x̄ is a minimizing solution for the problem
min{f (x), x ∈ S}, provided that x̄ ∈ S and f (x̄) ≤ f (x) for all
x ∈ S . In such a case we say that a minimum exists.

I On the other hand, we say that α = inf{f (x), x ∈ S}, if α is
the greatest lower bound of f on S ; that is, α ≤ f (x) for all
x ∈ S and there is no ᾱ > α such that ᾱ ≤ f (x) for all x ∈ S .

I Similarly, we say that α = sup{f (x), x ∈ S}, if α is the least
upper bound of f on S ; that is, α ≥ f (x) for all x ∈ S and
there is no ᾱ < α such that ᾱ ≥ f (x) for all x ∈ S .



Weierstrass’s Theorem

Weierstrass’s Theorem
Let S be a nonempty, compact set, and let f : S → R be
continuous on S . Then the problem min{f (x) : x ∈ S} attains its
minimum; that is, there exists a minimizing solution to this
problem.

Weierstrass’s Theorem

Proof
Here is the proof.



Separation and Support of Sets

The results of this section are based on the following geometric
fact:
Given a closed convex set S and a point y /∈ S , there exists a
unique point x̄ ∈ S with minimum distance from y and a
hyperplane that separates y and S .

Closest Point Theorem

Closest Point Theorem
Let S be a nonempty, closed convex set in Rn and y /∈ S . Then
there exists a unique point x̄ ∈ S with minimum distance from y.
Furthermore, x̄ is the minimizing point iif (y − x̄)t(x− x̄) ≤ 0 for
all x̄ ∈ S .



Closest Point Theorem

Proof
Here is the proof.

Hyperplanes and Seperation of Two Sets

Definition: Hyperplane and Half-Space

A hyperplane H in Rn is a collection of points of the form
{x : ptx = α}, where p is a nonzero vector in Rn and α is a scalar.
The vector p is called the normal vector of the hyperplane.
A hyperplane H defines two closed half-spaces
H+ = {x : ptx ≥ α} and H− = {x : ptx ≤ α}, and two open
half-spaces H+ = {x : ptx > α} and H+ = {x : ptx < α}.



Hyperplanes and Seperation of Two Sets

Definition: Separation

Let S1 and S2 be nonempty sets in Rn. A hyperplane
H = {x : ptx = α}, is said to separate S1 and S2 if ptx ≥ α for
each x ∈ S1 and ptx ≤ α for each x ∈ S2.
If, in addition, S1 ∪ S2 6⊂ H, H is said to properly separate S1 and
S2.
The hyperplane H is said to strictly separate S1 and S2 if ptx > α
for each x ∈ S1 and ptx < α for each x ∈ S2.
The hyperplane H is said to strongly separate S1 and S2 if
ptx ≥ α + ε for each x ∈ S1 and ptx ≤ α + ε for each x ∈ S2,
where ε is a positive scalar.

Hyperplanes and Seperation of Two Sets

Theorem: Separation Theorem

Let S be a nonempty closed convex set in Rn and y /∈ S . Then
there exists a nonzero vector p and a scalar α such that pty > α
and ptx ≤ α for each x ∈ S .



Hyperplanes and Seperation of Two Sets

Proof: Separation Theorem

The set S is a nonempty closed convex set and y /∈ S . Hence, by
the Closest Point Theorem, there exists a unique minimizing point
x̄ ∈ S such that (x− x̄)t(y − x̄) ≤ 0 for each x ∈ S .
Letting p = y − x̄ 6= 0 and α = x̄t(y − x̄) = pt x̄, we get ptx ≤ α
for each x ∈ S , while

pty − α = (y − x̄)t(y − x̄) = ||y − x̄||2 > 0

which completes the proof.

Hyperplanes and Seperation of Two Sets

Corollary 1

Let S be a closed convex set in Rn. Then S is the intersection of
all half-spaces containing S .

Proof
Obviously, S is contained in the intersection of all half-spaces
containing it. In contradiction of the desired result, suppose that
there is a point y in the intersection of these half-spaces but not in
S . By the theorem, there exists a half-space that contains S but
not y. This contradiction proves the corollary.



Hyperplanes and Seperation of Two Sets

Corollary 2

Let S be a nonempty set, and let y /∈ cl(conv(S)), the closure of
the convex hull of S . Then there exists a strongly separating
hyperplane for S and y.

Proof
The result follows by letting cl(conv(S)) play the role of S in the
Separation Theorem.

Hyperplanes and Seperation of Two Sets

Theorem: Farkas’s Theorem
Let A be an m × n matrix and c be an n-vector. Then exactly one
of the following two systems has a solution:

System 1: Ax ≤ 0 and ctx > 0 for some x ∈ Rn

System 2: Aty = c and y ≥ 0 for some y ∈ Rm.



Hyperplanes and Seperation of Two Sets

Proof: Farkas’s Theorem
Suppose that System 2 has a solution; that is, there exists y ≥ 0
such that Aty = c. Let x be such that Ax ≤ 0. Then
ctx = ytAx ≤ 0 Hence System 1 has no solution.
Now suppose that System 2 has no solution. From the set
S = {x : x = Aty, y ≥ 0}. Note that S is a closed convex set and
that c /∈ S . By the Separation Theorem, there exists a vector
p ∈ Rn and a scalar α such that ptc > α and ptx ≤ α for all
x ∈ S . Since 0 ∈ S , α ≥ 0, so ptc > 0. Also, α ≥ ptAty = ytAp
for all y ≥ 0. Since y ≥ 0 can be made arbitrarily large, the last
inequality implies that Ap ≤ 0. We have therefore constructed a
vector p ∈ Rn such that Ap ≤ 0 and ctp > 0. Hence, System 1
has a solution, and the proof is complete.

Hyperplanes and Seperation of Two Sets

Corollary 1: Gordan’s Theorem

Let A be an m × n matrix. Then exactly one of the following two
systems has a solution:

System 1: Ax ≤ 0 for some x ∈ Rn

System 2: Aty = 0 and y ≥ 0 for some nonzero y ∈ Rm.



Hyperplanes and Seperation of Two Sets

Proof: Gordan’s Theorem
Note that System 1 can be written equivalently as Ax + es ≤ 0 for
some x ∈ Rn and s > 0, s ∈ R, where e is a vector of m ones.
Rewriting this in the form of System 1 of Farkas’s Theorem, we get

[
A e

] [x
s

]
and

(
0 0 . . . 1

)(x
s

)
> 0, ∃

(
x
s

)
∈ Rn+1

By Farkas’s Theorem, the associated System 2 states that[
At

et

]
y =

(
0 0 . . . 1

)t
and y ≥ 0, ∃y ∈ Rm

that is, Aty = 0, ety = 1, and y ≥ 0 for some y ∈ Rm. This is
equivalent to System 2 of the corollary. Hence, the result follows.

Hyperplanes and Seperation of Two Sets

Corollary 2

Let A be an m × n matrix and c be an n-vector. Then exactly one
of the following two systems has a solution:

System 1: Ax ≤ 0, x ≥ 0, ctx > 0 for some x ∈ Rn

System 2: Aty ≥ c and y ≥ 0 for some y ∈ Rm.



Hyperplanes and Seperation of Two Sets

Proof: Corollary 2

The result follows by writing the first set of constraints of System
2 as equalities and, accordingly, replacing At in the theorem by
[At ,−I].

Hyperplanes and Seperation of Two Sets

Corollary 3

Let A be an m × n matrix, B be an l × n matrix, and c be an
n-vector. Then exactly one of the following two systems has a
solution:

System 1: Ax ≤ 0, Bx = 0, ctx > 0 for some x ∈ Rn

System 2: Aty + Btz = c and y ≥ 0 for some y ∈ Rm and
z ∈ Rl .



Hyperplanes and Seperation of Two Sets

Proof: Corollary 3

The result follows by writing z = z1 − z2 where z1 ≥ 0 and z2 ≥ 0
in System 2 and, accordingly, replacing At in the theorem by
[At ,Bt ,−Bt ].

Hyperplanes and Seperation of Two Sets

Definition: Support of Sets at Boundary Points

Let S be a nonempty set in Rn, and let x̄ ∈ ∂S . A hyperplane
H = {x : pt(x− x̄)} is called a supporting hyperplane of S at x̄ if
either S ⊆ H+, that is, pt(x− x̄) ≥ 0 for each x ∈ S , or else
S ⊆ H−, that is, pt(x− x̄) ≤ 0 for each x ∈ S . If, in addition,
S 6⊆ H, H is called a proper supporting hyperplane of S at x̄.



Hyperplanes and Seperation of Two Sets

Theorem
Let S be a nonempty convex set in Rn, and let x̄ ∈ ∂S . Then there
exists a hyperplane that supports S at x̄ ; that is, there exists a
nonzero vector p such that pt(x− x̄) ≤ 0 for each x ∈ cl(S).

Hyperplanes and Seperation of Two Sets

Corollary 1

Let S be a nonempty convex set in Rn, and let x̄ /∈ intS . Then
there is a nonzero vector p such that pt(x− x̄) ≤ 0 for each
x ∈ cl(S).



Hyperplanes and Seperation of Two Sets

Corollary 2

Let S be a nonempty set in Rn, and let y /∈ int(conv(S)). Then
there exists a hyperplane that separates S and y.

Hyperplanes and Seperation of Two Sets

Corollary 3

Let S be a nonempty set in Rn, and let x̄ ∈ int∂S ∩ conv(S). Then
there exists a hyperplane that supports S at x̄.



Hyperplanes and Seperation of Two Sets

Theorem
Let S1 and S2 be nonempty convex sets in Rn and suppose that
S1 ∩ S2 is empty. Then there exists a hyperplane that separates S1
and S2; that is, there exists a nonzero vector p ∈ Rn such that

inf{ptx : x ∈ S1} ≥ sup{ptx : x ∈ S2}

Hyperplanes and Seperation of Two Sets

Theorem: Gordan’s Theorem
Let A be an m × n matrix. Then exactly one of the following two
systems has a solution:

System 1: Ax < 0 for some x ∈ Rn

System 2: Atp = 0 and p ≥ 0 for some nonzero p ∈ Rm.



Hyperplanes and Seperation of Two Sets

Theorem: Strong Separation Theorem

Let S1 and S2 be closed convex sets, and suppose that S1 is
bounded. If S1 ∩ S2 is empty, there exists a hyperplane that
strongly separates S1 and S2; that is, there exists a nonzero vector
p and ε > 0 such that

inf{ptx : x ∈ S1} ≥ ε+ sup{ptx : x ∈ S2}

Convex Cones and Polarity

Definition: Convex Cone
A nonempty set C in Rn is called a cone with vertex zero if x ∈ C
implies that λx ∈ C for all λ ≥ 0. If, in addition, C is convex, C is
called a convex cone.



Convex Cones and Polarity

An important special class of convex cones is that of polar cones.

Definition: Polar Cone
Let S be a nonempty set Rn. Then the polar cone of S , denoted
S∗, is given by {p : ptx ≤ 0,∀x ∈ S}. If S is empty, S∗ will be
interpreted as Rn.

Convex Cones and Polarity

Definition: Polar Cone
Let S , S1, and S2 be nonempty sets in Rn. Then the following
statements hold true.

1. S∗ is a closed convex cone.

2. S ⊆ S∗∗, where S∗∗ is the polar cone of S∗.

3. S1 ⊆ S2 implies that S∗
2 ⊆ S∗

1 .



Convex Cones and Polarity

Theorem
Let C be a nonempty closed convex cone. Then C = C ∗∗.

Polyhedral Sets

Definition: Polyhedral Sets

A set in Rn is called a polyhedral set if it is the intersection of a
finite number of closed half-spaces; that is,
{p : pti x ≤ αi , ∀i = 1, . . .m}, where pi is a nonzero vector and αi

is a scalar for for i = 1, . . .m.



Extreme Points

Definition: Extreme Points
Let S be nonempty convex set in Rn. A vector x is called an
extreme point of S if x = λx1 + (1− λ)x2 with x1, x2 ∈ S , and
λ ∈ (0, 1) implies that x = x1 = x2.

Extreme Directions

Definition: Extreme Directions
Let S be a nonempty, closed convex set in Rn. A nonzero vector d
in Rn is called a direction, or a recession direction, of S if for each
x ∈ S , x + λd ∈ S for all λ ≥ 0. Two directions d1 and d2 of S are
called distinct if d1 6= αd2 for any α > 0.
A direction d of S is called an extreme direction if it cannot be
written as a positive linear combination of two distinct directions;
that is, if d = λ1d1 + λ2d2 for λ1, λ2 > 0, then d1 = αd2 for some
α > 0.



Characterization of Extreme Points

Theorem: Characterization of Extreme Points
Let S = {x : Ax = b, x ≥ 0}, where A is an m × n matrix of rank
m and b is an m-vector. A point x is an extreme point of S if and
only if A can be decomposed into [B,N] such that[

xB
xN

]
=

[
B−1b
0

]
where B is an m ×m invertible matrix satisfying B−1b ≥ 0. Any
such solution is called a basic feasible solution (BFS) for S .

Characterization of Extreme Points

Corollary

The number of extreme points of S is finite.



Characterization of Extreme Points

Theorem: Existence of Extreme Points
Let S = {x : Ax = b, x ≥ 0} be nonempty, where A is an m × n
matrix of rank m and b is an m-vector. Then S has at least one
extreme point.

Characterization of Extreme Directions

Theorem: Characterization of Extreme Directions
Let S = {x : Ax = b, x ≥ 0} be nonempty, where A is an m × n
matrix of rank m and b is an m-vector. A vector d̄ is an extreme
direction of S if and only if A can be decomposed into [B,N] such
that B−1aj ≤ 0 for some column aj of N, and d̄ is a positive
multiple of d,

d =

(
−B−1aj

ej

)
where ej is an n −m elementary vector.



Characterization of Extreme Directions

Corollary

The number of extreme directions of S is finite.

Representation Theorem

Theorem: Representation Theorem

Let S = {x : Ax = b, x ≥ 0} be nonempty, where A is an m × n
matrix of rank m and b is an m-vector. Let x1, . . . , xk be the
extreme points of S and d1, . . . ,dl be the extreme directions of S .
Then x ∈ S if and only if x can be written as

x =
k∑

j=1

λjxj +
l∑

j=1

µjdj

k∑
j=1

λj = 1

where λj ≥ 0, ∀j and µj ≥ 0,∀j .



Representation Theorem

Corollary: Existence of Extreme Directions

Let S = {x : Ax = b, x ≥ 0} be nonempty, where A is an m × n
matrix of rank m and b is an m-vector. Then S has at least one
extreme direction if and only if it is unbounded.

Linear Programming and the Simplex Method

Please see Linear Programming lecture notes for a review of Linear
Programming and the Simplex Method.
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Thanks! Questions?
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