Probability and Statistics
 Lecture 11: Regression and Correlation

to accompany
Probability and Statistics for Engineers and Scientists
Fatih Cavdur

Introduction

A simple relationship between the dependent variable (response) Y and the independent variable (regressor) x can be written as

$$
Y=\beta_{0}+\beta_{1} x
$$

where β_{0} is the intercept and β_{1} is the slope.

Introduction

Introduction

In many applications, there might be more than one independent variable, such as

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
$$

which is a multiple linear regression equation with 2 independent variables.

The Simple Linear Regression (SLR) Model

The SLR model can be written as

$$
Y=\beta_{0}+\beta_{1} x+\epsilon
$$

where $E(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2}$, and hence, Y is an RV.

The Simple Linear Regression (SLR) Model

The Simple Linear Regression (SLR) Model

Example 11.1: One of the more challenging problems confronting the water pollution control field is presented by the tanning industry. Tannery wastes are characterized by high values of chemical oxygen demand, volatile solids and other pollution measures. Consider the following data where 33 samples of chemically treated waste in a study conducted at Virginia Tech in which x is the percent reduction in total solids and y is the percent reduction in chemical oxygen demand.

The Simple Linear Regression (SLR) Model

Solids Reduction, $\boldsymbol{x}(\mathbf{\%})$	Oxygen Demand Reduction, $\boldsymbol{y}(\mathbf{\%})$	Solids Reduction, $\boldsymbol{x}(\mathbf{\%})$	Oxygen Demand Reduction, $\boldsymbol{y}(\%)$
3	5	36	34
7	11	37	36
11	21	38	38
15	16	39	37
18	16	39	36
27	28	39	45
29	27	40	39
30	25	41	41
30	35	42	40
31	30	42	44
31	40	43	37
32	32	44	44
33	34	45	46
33	32	46	46
34	34	47	49
36	37	50	51
36	38		

The Simple Linear Regression (SLR) Model

The Simple Linear Regression (SLR) Model

Fatih Cavdur - fatihcavdur@uludag.edu.tr

Least Squares and the Fitted Model

Given a set of regression data $\left\{\left(x_{i}, y_{i}\right), i=1,2, \ldots, n\right\}$ and a fitted model, $\hat{y}_{i}=b_{0}+b_{1} x$, the i th residual e_{i} is given by

$$
e_{i}=y_{i}-\hat{y}_{i}, \quad i=1,2, \ldots, n
$$

Least Squares and the Fitted Model

Least Squares and the Fitted Model

Least Squares and the Fitted Model

We want to minimize the Sum of Squared Errors (SSE) defined as

$$
S S E=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
$$

and

$$
\begin{aligned}
& \frac{\partial(S S E)}{\partial b_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right) \\
& \frac{\partial(S S E)}{\partial b_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right) x_{i}
\end{aligned}
$$

Least Squares and the Fitted Model

We then have

$$
\begin{aligned}
& \frac{\partial(S S E)}{\partial b_{0}}=0 \Rightarrow n b_{0}+b_{1} \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i} \\
& \frac{\partial(S S E)}{\partial b_{1}}=0 \Rightarrow b_{0} \sum_{i=1}^{n} x_{i}+b_{1} \sum_{i=1}^{n} x_{i}^{2}=\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

Least Squares and the Fitted Model

By solving the above equations (normal equations), we obtain

$$
\begin{gathered}
b_{1}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
b_{0}=\frac{\sum_{i=1}^{n} y_{i}-b_{1} \sum_{i=1}^{n} x_{i}}{n}=\bar{y}-b_{1} \bar{x}
\end{gathered}
$$

Least Squares and the Fitted Model

In our example, we have

$$
\begin{gathered}
\sum_{i=1}^{33} x_{i}=1,104 ; \quad \sum_{i=1}^{33} y_{i}=1,124 ; \quad \sum_{i=1}^{33} x_{i} y_{i}=41,355 ; \quad \sum_{i=1}^{33} x_{i}^{2}=41,086 \\
b_{1}=\frac{n \sum_{i=1}^{n} x_{i} y_{i}-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\
=\frac{(33)(41,355)-(1,104)(1,124)}{(33)(41,086)-(1,104)^{2}} \\
=0.904 \\
b_{0}=\frac{\sum_{i=1}^{n} y_{i}-b_{1} \sum_{i=1}^{n} x_{i}}{n}=\frac{1,124-(0,904)(1,104)}{33}=3.830
\end{gathered}
$$

Least Squares and the Fitted Model

We can use the following notation in the following sections:
$S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} ; \quad S_{y y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} ; \quad S_{x y}=S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$

Least Squares and the Fitted Model

We can then write the sum of squared error as

$$
\begin{aligned}
S S E & =\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2} \\
& =\sum_{i=1}^{33}\left[\left(y_{i}-\bar{y}\right)-b_{1}\left(x_{i}-\bar{x}\right)\right]^{2} \\
& =\sum_{i=1}^{33}\left(y_{i}-\bar{y}\right)^{2}-2 b_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)+b_{1}^{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =S_{y y}-2 b_{1} S_{x y}+b_{1}^{2} S_{x x} \\
& =S_{y y}-b_{1} S_{x y}
\end{aligned}
$$

Least Squares and the Fitted Model

An unbiased estimate of σ^{2} is

$$
s^{2}=\frac{S S E}{n-2}=\sum_{i=1}^{n} \frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}=\frac{S_{y y}-b_{1} S_{x y}}{n-2}
$$

Least Squares and the Fitted Model

```
Regression Analysis: COD versus Per_Red
The regression equation is COD = 3.83 + 0.904 Per_Red
Predictor Coef SE Coef T P
Constant 
Per_Red 0.90364 0.05012 18.03 0.000
S = 3.22954 R-Sq = 91.3% R-Sq(adj) = 91.0%
Analysis of Variance
Source DF SS MS F P
Regression }1\begin{array}{lllllll}{1}&{3390.6}&{3390.6}&{325.08}&{0.000}
Residual Error 31 323.3 10.4
Total 32 3713.9
```


Least Squares and the Fitted Model

A $100(1-\alpha) \% \mathrm{Cl}$ for β_{1} is given by

$$
b_{1}-t_{\alpha / 2} \frac{s}{\sqrt{S_{x x}}}<\beta_{1}<b_{1}+t_{\alpha / 2} \frac{s}{\sqrt{S_{x x}}}
$$

A $100(1-\alpha) \% \mathrm{Cl}$ for β_{0} is given by

$$
b_{0}-t_{\alpha / 2} \frac{s}{\sqrt{n S_{x x}}} \sqrt{\sum_{i=1}^{33} x_{i}^{2}}<\beta_{0}<b_{0}+t_{\alpha / 2} \frac{s}{\sqrt{n S_{x x}}} \sqrt{\sum_{i=1}^{33} x_{i}^{2}}
$$

Least Squares and the Fitted Model

We can perform a test about the slope as follows:

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{10} \\
& H_{1}: \beta_{1} \neq \beta_{10}
\end{aligned}
$$

where we use the t-statistic as

$$
t=\frac{b_{1}-\beta_{10}}{s / \sqrt{S_{x x}}}
$$

Least Squares and the Fitted Model

Least Squares and the Fitted Model

(a)

(b)

Least Squares and the Fitted Model

The quality of fit is measured with a parameter called coefficient of determination, R^{2} and computed as

$$
R^{2}=1-\frac{S S E}{S S T}=1-\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{i}\right)^{2}}
$$

Least Squares and the Fitted Model

(a) $R^{2} \approx 1.0$
(b) $R^{2} \approx 0$

Least Squares and the Fitted Model

Least Squares and the Fitted Model

Least Squares and the Fitted Model

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed \boldsymbol{f}
Regression	$S S R$	1	$S S R$ Error	$S S E$

Some Useful Transformations

Functional Form Relating \boldsymbol{y} to \boldsymbol{x}	Proper Transformation	Form of Simple Linear Regression
Exponential: $y=\beta_{0} e^{\beta_{1} x}$	$y^{*}=\ln y$	Regress y^{*} against x
Power: $y=\beta_{0} x^{\beta_{1}}$	$y^{*}=\log y ; \quad x^{*}=\log x$	Regress y^{*} against x^{*}
Reciprocal: $y=\beta_{0}+\beta_{1}\left(\frac{1}{x}\right)$	$x^{*}=\frac{1}{x}$	Regress y against x^{*}
Hyperbolic: $y=\frac{x}{\beta_{0}+\beta_{1} x}$	$y^{*}=\frac{1}{y} ; \quad x^{*}=\frac{1}{x}$	Regress y^{*} against x^{*}

Some Useful Transformations

Correlation

The measure ρ of linear correlation between two variables X and Y is estimated by the sample correlation coefficient r as

$$
r=b_{1} \sqrt{\frac{S_{x x}}{S_{y y}}}=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}
$$

End of Lecture

Thank you! Questions?

