Probability and Statistics
Lecture 11: Regression and Correlation

to accompany
Probability and Statistics for Engineers and Scientists
Fatih Cavdur

Fatih Cavdur — fatihcavdur@uludag.edu.tr




Introduction

A simple relationship between the dependent variable (response) Y and
the independent variable (regressor) x can be written as

Y =py+ f1x

where [, is the intercept and [, is the slope.
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Introduction

In many applications, there might be more than one independent

variable, such as

Y =By + f1x1 + Brx;

which is a multiple linear regression equation with 2 independent

variables.
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.
The Simple Linear Regression (SLR) Model

The SLR model can be written as
Y = ,80 + ,le + €

where E(e) = 0 and Var(e) = ¢, and hence, Y is an RV.
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.
The Simple Linear Regression (SLR) Model

¢ “True” Regression Line

E(Y)=Bo+p1x
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The Simple Linear Regression (SLR) Model

Example 11.1: One of the more challenging problems confronting the
water pollution control field is presented by the tanning industry.
Tannery wastes are characterized by high values of chemical oxygen
demand, volatile solids and other pollution measures. Consider the
following data where 33 samples of chemically treated waste in a study
conducted at Virginia Tech in which x is the percent reduction in total
solids and y is the percent reduction in chemical oxygen demand.
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.
The Simple Linear Regression (SLR) Model

Solids Reduction, Oxygen Demand | Solids Reduction, Oxygen Demand

z (%) Reduction, y (%) z (%) Reduction, y (%)
3 5 36 34
7 11 37 36
11 21 38 38
15 16 39 37
18 16 39 36
27 28 39 45
29 27 40 39
30 25 41 41
30 35 42 40
31 30 42 44
31 40 43 37
32 32 44 44
33 34 45 46
33 32 46 46
34 34 47 49
36 37 50 51

36 38
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The Simple Linear Regression (SLR) Model

X
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The Simple Linear Regression (SLR) Model
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e
Least Squares and the Fitted Model

Given a set of regression data {(x;,y;),i = 1,2, ..., n} and a fitted
model, y; = by + by x, the ith residual ¢, is given by

€; =yi_yi' i=1,2,...,n
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e
Least Squares and the Fitted Model

y

j'}: b0+b1)(

Myx=PBo+ P1x
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e
Least Squares and the Fitted Model
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e
Least Squares and the Fitted Model

We want to minimize the Sum of Squared Errors (SSE) defined as

n n n
SSE = z ef = Z(Yi —9)* = Z(yi — by — byx;)*
i=1 i—1 i=1

and

d0(SSE
(abo) Z(yl—bo b1x;)

O(SSE) _
5. Z(yl — by — by,
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Least Squares and the Fitted Model

We then have

n n

d(SSE)
= 0 = nb, +b12xi =Zyl-

abo i=1 i=1

n n

d(SSE) . X
=O$b02xi+b12xi =inyi
abl i=1

i=1 i=1
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e
Least Squares and the Fitted Model

By solving the above equations (normal equations), we obtain

nYieq XY — Qizq ) Xi=1 ¥i) _ =1 =)y, — ¥)
n Y %t — (B i) =1 (i = %)°

it b X;
b0: l-lyl nlzl =1 :)_/—blf

by =
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e
Least Squares and the Fitted Model

In our example, we have

33 33 33 33
in = 1,104; Zyl- = 1,124; inyi = 41,355; le? = 41,086
i=1 i=1 i=1 i=1

lel 1xlyl (Zn 1x)(21 1yl)
nzl 1xl _ (Zn 1X)
~ (33)(41,355) — (1,104)(1,124)
~(33)(41,086) — (1,104)2
= 0.904

by =

Py —bi Xi1x 1,124 —(0,904)(1,104)

= = 3.830
n 33
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e
Least Squares and the Fitted Model

We can use the following notation in the following sections:

S

n n
Sxx = z(xi - f)zi Syy = z(yi - 3_’)2; Sxy = Syx = (x; —x)y; — ¥)
i1 i—1 i—1
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e
Least Squares and the Fitted Model

We can then write the sum of squared error as

n

SSE = (i — by — by
i=1
33

= Z[(Yi — ) — by (x; — %)]°

i=1
33 n n

= Z(Yi — )% = 2by Z(xi —©)(y; — ¥) + bf E(xi - %)*
i=1 i=1 i=1

=S,y — 2b1S,y + bf Sy,
— Syy - bley
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e
Least Squares and the Fitted Model

An unbiased estimate of g2 is

_ SSE

n—2 n—2 n—2
i=1

n A\
(yi _ yi)z . Syy R blsxy

SZ
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e
Least Squares and the Fitted Model

Regression Analysis: COD versus Per_Red
The regression equation is COD = 3.83 + 0.904 Per_Red

Predictor Coef SE Coef T P
Constant 3.830 1.768 2.17 0.038
Per_Red 0.90364 0.05012 18.03 0.000

S = 3.229564 R-Sq = 91.3)%, R-Sq(adj) = 91.0%
Analysis of Variance

Source DF SS MS F P
Regression 1 3390.6 3390.6 325.08 0.000
Residual Error 31  323.3 10.4

Total 32 3713.9
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e
Least Squares and the Fitted Model

A 100(1 — a)% ClI for [, is given by

s
b1 —tap——=—=<Pp1 < b1+ 1y
Sxx Sxx

A 100(1 — a)% Cl for S, is given by

33 33
S

S
by =ty ——— in2<,80<b0+toc/2 lez
Tlex \ i1 nSxx \ i=1
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e
Least Squares and the Fitted Model

We can perform a test about the slope as follows:
Hy: B1 = B1o
Hq: B1 # Bio
where we use the t-statistic as

bl o 1810

/S

t
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e
Least Squares and the Fitted Model
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e
Least Squares and the Fitted Model

Fatih Cavdur — fatihcavdur@uludag.edu.tr




e
Least Squares and the Fitted Model

The quality of fit is measured with a parameter called coefficient of
determination, R? and computed as
SSE i=1 (Vi — 9;)*

RP=1-——F7=1- —
55T i=1 (i — ¥1)°
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Least Squares and the Fitted Model

<l
|
®

(a) R? =~ 1.0 (b) R* =~ 0
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e
Least Squares and the Fitted Model

y A
50 Y=bg+bix
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Least Squares and the Fitted Model

60

Chemical Oxygen Demand Reduction

| 1 | I | |
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Least Squares and the Fitted Model

Source of Sum of Degrees of Mean Computed

Variation Squares  Freedom Square f
Regression SSR 1 SSR o
Error SSE n—2 §? = %

Total SST n—1
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Some Useful Transformations

Functional Form Proper Form of Simple
Relating y to = Transformation Linear Regression
Exponential: y = Byef1® y* =Iny Regress y* against z

logy; z* =logx Regress y* against z*

Power: y = [ByaP

Reciprocal: y = By + f1(3)

Hyperbolic: y = 5o fﬁw

Regress y against z*

SRS
|

.ot = % Regress y* against z*
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Some Useful Transformations

y y d f
ﬂ1 >1
Bo
ﬁ-] <0
B1>0 0< pBy<1 By <0
Bo
X X X X
(a) Exponential function (b) Power function
y Y y
Bop--------------- Bt ------------~"
B1<0
B1>0
Bop---------------
X X X
(c) Reciprocal function (d) Hyperbolic function
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Correlation

The measure p of linear correlation between two variables X and Y is
estimated by the sample correlation coefficient r as

Sxy

\OxxOyy

.S_
T:bl ﬂ:
\JSyy
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End of Lecture

Thank you! Questions?
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