Probability and Statistics Lecture 6: Some Continuous Distributions

to accompany

Probability and Statistics for Engineers and Scientists Fatih Cavdur

Uniform Distribution

PDF of the uniform distribution is given by

$$f(x; A, B) = \begin{cases} \frac{1}{B - A}, & A \le x \le B\\ 0, & \text{otherwise} \end{cases}$$

The mean and variance of the uniform distribution is given by

$$\mu = \frac{A+B}{2}$$
 and $\sigma^2 = \frac{(B-A)^2}{12}$

Uniform Distribution

Find the probability that $P\{X \ge 3\}$, if we have

$$f(x; 0, 4) = \begin{cases} \frac{1}{4}, & 0 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$$

We have

$$P\{X \ge 3\} = \int_{3}^{4} \frac{dx}{4} = \frac{1}{4}$$

Uniform Distribution

The mean and variance of the uniform distribution are

$$\mu = \frac{A+B}{2}$$
 and $\sigma^2 = \frac{(B-A)^2}{12}$.

PDF of the normal distribution with mean μ and variance σ^2 is given by

$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

for $-\infty < x < +\infty$.

The mean and variance of the normal distribution is given by

 μ and σ^2

Standard Normal Distribution

The distribution of a normal random variable with mean 0 and variance 1 is called a **standard normal distribution**.

Example 6.2: For a standard normal distribution, find the area under the curve that lies to the right of z = 1.84 and between z = -1.97 and z = 0.86.

The area under the curve that lies to the right of z = 1.84 is

$$P\{Z \le 1.84\} = 1 - \phi(1.84) = 1 - 0.9671 = 0.0329$$

Similarly, the area under the curve that lies between z = -1.97 and z = 0.86 is

$$P\{-1.97 \le Z \le 0.86\} = \phi(0.86) - \phi(-1.97)$$
$$= 0.8051 - 0.0244$$
$$= 0.7807$$

Example 6.3: For a standard normal distribution, find the value of k such that $P\{Z > k\} = 0.3015$ and $P\{k < Z < -0.18\} = 0.4197$.

We have that

 $P\{Z > k\} = 0.3015 = 1 - P\{Z \le k\} \Rightarrow \phi(k) = 0.6985 \Rightarrow k = 0.52$ Similarly,

$$P\{k < Z < -0.18\} = 0.4197$$
$$= \phi(-0.18) - \phi(k)$$
$$\Rightarrow \phi(k) = 0.0089$$
$$\Rightarrow k = -2.37$$

Example 6.4: Given an RV X with normal distribution with $\mu = 50$ and $\sigma = 10$, find the probability that X is between 45 and 62.

We can write

$$P\{45 < X < 62\} = P\left\{\frac{45 - 50}{10} < Z < \frac{62 - 50}{10}\right\}$$
$$= P\{-0.5 < Z < 1.2\}$$
$$= \phi(1.2) - \phi(-0.5)$$
$$= 0.8840 - 0.3085$$
$$= 0.5764$$

Example 6.6: For a normal RV X with $\mu = 40$ and $\sigma = 6$, find the value of x that has 14% of the area to the right.

We have

$$1 - \phi(k) = 0.14 \Rightarrow \phi(k) = 0.86 \Rightarrow k = 1.08$$
$$k = 1.08 = \frac{x - 40}{6} \Rightarrow x = 46.48$$

Normal Approximation to Binomial

If X is a binomial random variable with mean $\mu = np$ and variance $\sigma^2 = npq$, then the limiting form of the distribution of

$$Z = \frac{X - np}{\sqrt{npq}},$$

as $n \to \infty$, is the standard normal distribution n(z; 0, 1).

Normal Approximation to Binomial

Normal Approximation to Binomial

	p = 0.05, n = 10 $p = 0.10, n = 10$ $p = 0.50, n = 10$						
	~ /		* /		<u> </u>		
r	Binomial			Normal		Normal	
0	0.5987	0.5000	0.3487	0.2981	0.0010	0.0022	
1	0.9139	0.9265	0.7361	0.7019	0.0107	0.0136	
2	0.9885	0.9981	0.9298	0.9429	0.0547	0.0571	
3	0.9990	1.0000	0.9872	0.9959	0.1719	0.1711	
4	1.0000	1.0000	0.9984	0.9999	0.3770	0.3745	
5			1.0000	1.0000	0.6230	0.6255	
6					0.8281	0.8289	
7					0.9453	0.9429	
8					0.9893	0.9864	
9					0.9990	0.9978	
10					1.0000	0.9997	
	p = 0.05						
	n = 20		n = 50		n = 100		
r	Binomial	Normal	Binomial	Normal	Binomial	Normal	
0	0.3585	0.3015	0.0769	0.0968	0.0059	0.0197	
1	0.7358	0.6985	0.2794	0.2578	0.0371	0.0537	
2	0.9245	0.9382	0.5405	0.5000	0.1183	0.1251	
3	0.9841	0.9948	0.7604	0.7422	0.2578	0.2451	
4	0.9974	0.9998	0.8964	0.9032	0.4360	0.4090	
5	0.9997	1.0000	0.9622	0.9744	0.6160	0.5910	
6	1.0000	1.0000	0.9882	0.9953	0.7660	0.7549	
7			0.9968	0.9994	0.8720	0.8749	
8			0.9992	0.9999	0.9369	0.9463	
9			0.9998	1.0000	0.9718	0.9803	
10			1.0000	1.0000	0.9885	0.9941	

PDF of the gamma distribution is given by

$$f(x; \alpha, \beta) = \begin{cases} \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

where $\alpha > 0$ and $\beta > 0$ and Γ is the gamma function defined as

$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx$$

where $\alpha > 0$.

PDF of the exponential distribution is given by

$$f(x; \alpha, \beta) = \begin{cases} \frac{e^{-x/\beta}}{\beta}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

where $\beta > 0$.

Example 6.17: A system contains a certain type of component whose time to failure is given by the RV T (in years). The RV is modeled nicely by the exponential distribution with mean time to failure is 5 years. If 5 of these components are installed in different systems, what is the probability that at least 2 are still functioning at the end of 8 years?

We have

$$P\{T > 8\} = \frac{1}{5} \int_{8}^{\infty} e^{-t/5} dt = e^{-8/5} \cong 0.2$$

If we let X be the number of components functioning at the end of 8 years, then, X is binomial with n = 5 and p = 0.2.

$$P\{X \ge 2\} = 1 - P\{X \le 1\}$$

= $1 - \sum_{x=0}^{1} {5 \choose x} (0.2)^{x} (1 - 0.2)^{5-x}$
= 0.2627

The mean and variance of the gamma distribution are

$$\mu = \alpha \beta$$
 and $\sigma^2 = \alpha \beta^2$

The mean and variance of the exponential distribution are

$$\mu = \beta$$
 and $\sigma^2 = \beta^2$

Chi-Square Distribution

PDF of the chi-squared distribution is given by

$$f(x;v) = \begin{cases} \frac{x^{\frac{v}{2}-1}e^{-\frac{x}{2}}}{2^{\nu/2}\Gamma\left(\frac{v}{2}\right)}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

where the degrees of freedom $v \in \mathbb{Z}^+$.

The mean and the variance of the chi-squared distribution are

$$\mu = v$$
 and $\sigma^2 = 2v$

Beta Distribution

PDF of the beta distribution is

$$f(x; \alpha, \beta) = \begin{cases} \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

where $\alpha > 0$ and $\beta > 0$, and B is the beta function defined as

$$B(\alpha,\beta) = \int_{0}^{1} x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

where $\alpha > 0$ and $\beta > 0$

Beta Distribution

The mean and the variance of the beta distribution are

$$\mu = \frac{\alpha}{\alpha + \beta}$$

and

$$\sigma^2 = \frac{\alpha\beta}{(\alpha+\beta)(\alpha+\beta+1)}$$

PDF of the log-normal distribution is given by

$$f(x;\mu,\sigma) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma^2 x^2}} e^{-\frac{[\ln(x)-\mu]^2}{2\sigma^2}}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$

where $Y = \ln(X)$.

The mean and variance of the log-normal distribution are

$$\mu=e^{\mu+\sigma^2/2}$$
 and $\sigma^2=e^{2\mu+\sigma^2}ig(e^{\sigma^2}-1ig)$

Weibull Distribution ($\alpha = 1$)

PDF of the Weibull distribution is given by

$$f(x; \alpha, \beta) = \begin{cases} \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

Where $\alpha > 0$ and $\beta > 0$.

Weibull Distribution

The mean and variance of the Weibull distribution are

$$\mu = \alpha^{-1/\beta} \, \Gamma \left(1 + \frac{1}{\beta} \right)$$

and

$$\sigma^{2} = \alpha^{-2/\beta} \left\{ \Gamma \left(1 + \frac{2}{\beta} \right) - \left[\Gamma \left(1 + \frac{1}{\beta} \right) \right]^{2} \right\}$$

End of Lecture

Thank you! Questions?

Fatih Cavdur – fatihcavdur@uludag.edu.tr