Probability and Statistics
 Lecture 6: Some Continuous Distributions

to accompany
Probability and Statistics for Engineers and Scientists
Fatih Cavdur

Uniform Distribution

PDF of the uniform distribution is given by

$$
f(x ; A, B)=\left\{\begin{array}{cc}
\frac{1}{B-A}, & A \leq x \leq B \\
0, & \text { otherwise }
\end{array}\right.
$$

The mean and variance of the uniform distribution is given by

$$
\mu=\frac{A+B}{2} \quad \text { and } \quad \sigma^{2}=\frac{(B-A)^{2}}{12}
$$

Uniform Distribution

Find the probability that $P\{X \geq 3\}$, if we have

$$
f(x ; 0,4)= \begin{cases}\frac{1}{4}, & 0 \leq x \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

We have

$$
P\{X \geq 3\}=\int_{3}^{4} \frac{d x}{4}=\frac{1}{4}
$$

Uniform Distribution

Uniform Distribution

The mean and variance of the uniform distribution are

$$
\mu=\frac{A+B}{2} \text { and } \sigma^{2}=\frac{(B-A)^{2}}{12}
$$

Normal Distribution

PDF of the normal distribution with mean μ and variance σ^{2} is given by

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

for $-\infty<x<+\infty$.
The mean and variance of the normal distribution is given by
μ and σ^{2}

Normal Distribution

Normal Distribution

Normal Distribution

Normal Distribution

Standard Normal Distribution

The distribution of a normal random variable with mean 0 and variance 1 is called a standard normal distribution.

Standard Normal Distribution

Example

Example 6.2: For a standard normal distribution, find the area under the curve that lies to the right of $z=1.84$ and between $z=-1.97$ and $z=0.86$.

Example

(a)

(b)

Example

The area under the curve that lies to the right of $z=1.84$ is

$$
P\{Z \leq 1.84\}=1-\phi(1.84)=1-0.9671=0.0329
$$

Similarly, the area under the curve that lies between $z=-1.97$ and $z=0.86$ is

$$
\begin{aligned}
P\{-1.97 \leq Z \leq 0.86\} & =\phi(0.86)-\phi(-1.97) \\
& =0.8051-0.0244 \\
& =0.7807
\end{aligned}
$$

Example

Example 6.3: For a standard normal distribution, find the value of k such that $P\{Z>k\}=0.3015$ and $P\{k<Z<-0.18\}=0.4197$.

Example

(b)

Example

We have that

$$
P\{Z>k\}=0.3015=1-P\{Z \leq k\} \Rightarrow \phi(k)=0.6985 \Rightarrow k=0.52
$$

Similarly,

$$
\begin{aligned}
P\{k<Z<-0.18\} & =0.4197 \\
& =\phi(-0.18)-\phi(k) \\
& \Rightarrow \phi(k)=0.0089 \\
& \Rightarrow k=-2.37
\end{aligned}
$$

Example

Example 6.4: Given an RV X with normal distribution with $\mu=50$ and $\sigma=10$, find the probability that X is between 45 and 62 .

We can write

$$
\begin{aligned}
P\{45<X<62\} & =P\left\{\frac{45-50}{10}<Z<\frac{62-50}{10}\right\} \\
& =P\{-0.5<Z<1.2\} \\
& =\phi(1.2)-\phi(-0.5) \\
& =0.8840-0.3085 \\
& =0.5764
\end{aligned}
$$

Example

Example 6.6: For a normal RV X with $\mu=40$ and $\sigma=6$, find the value of x that has 14% of the area to the right.

Example

(b)

Example

We have

$$
\begin{aligned}
& 1-\phi(k)=0.14 \Rightarrow \phi(k)=0.86 \Rightarrow k=1.08 \\
& k=1.08=\frac{x-40}{6} \Rightarrow x=46.48
\end{aligned}
$$

Normal Approximation to Binomial

If X is a binomial random variable with mean $\mu=n p$ and variance $\sigma^{2}=n p q$, then the limiting form of the distribution of

$$
Z=\frac{X-n p}{\sqrt{n p q}}
$$

as $n \rightarrow \infty$, is the standard normal distribution $n(z ; 0,1)$.

Normal Approximation to Binomial

Normal Approximation to Binomial

	$p=0.05, n=10$		$p=0.10, n=10$		$p=0.50, n=10$	
\boldsymbol{r}	Binomial	Normal	Binomial	Normal	Binomial	Normal
0	0.5987	0.5000	0.3487	0.2981	0.0010	0.0022
1	0.9139	0.9265	0.7361	0.7019	0.0107	0.0136
2	0.9885	0.9981	0.9298	0.9429	0.0547	0.0571
3	0.9990	1.0000	0.9872	0.9959	0.1719	0.1711
4	1.0000	1.0000	0.9984	0.9999	0.3770	0.3745
5			1.0000	1.0000	0.6230	0.6255
6				0.8281	0.8289	
7				0.9453	0.9429	
8			0.9893	0.9864		
9			0.9990	0.9978		
10			$n=50$	1.0000	0.9997	
		$n=20$				

r	Binomial	Normal	Binomial	Normal	Binomial	Normal
0	0.3585	0.3015	0.0769	0.0968	0.0059	0.0197
1	0.7358	0.6985	0.2794	0.2578	0.0371	0.0537
2	0.9245	0.9382	0.5405	0.5000	0.1183	0.1251
3	0.9841	0.9948	0.7604	0.7422	0.2578	0.2451
4	0.9974	0.9998	0.8964	0.9032	0.4360	0.4090
5	0.9997	1.0000	0.9622	0.9744	0.6160	0.5910
6	1.0000	1.0000	0.9882	0.9953	0.7660	0.7549
7			0.9968	0.9994	0.8720	0.8749
8			0.9992	0.9999	0.9369	0.9463
9			0.9998	1.0000	0.9718	0.9803
10			1.0000	1.0000	0.9885	0.9941

Gamma and Exponential Distribution

PDF of the gamma distribution is given by

$$
f(x ; \alpha, \beta)=\left\{\begin{array}{cc}
\frac{x^{\alpha-1} e^{-x / \beta}}{\beta^{\alpha} \Gamma(\alpha)}, & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

where $\alpha>0$ and $\beta>0$ and Γ is the gamma function defined as

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

where $\alpha>0$.

Gamma and Exponential Distribution

PDF of the exponential distribution is given by

$$
f(x ; \alpha, \beta)=\left\{\begin{array}{cc}
\frac{e^{-x / \beta}}{\beta}, & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

where $\beta>0$.

Gamma and Exponential Distribution

Gamma and Exponential Distribution

Example 6.17: A system contains a certain type of component whose time to failure is given by the RV T (in years). The RV is modeled nicely by the exponential distribution with mean time to failure is 5 years. If 5 of these components are installed in different systems, what is the probability that at least 2 are still functioning at the end of 8 years?

Gamma and Exponential Distribution

We have

$$
P\{T>8\}=\frac{1}{5} \int_{8}^{\infty} e^{-t / 5} d t=e^{-8 / 5} \cong 0.2
$$

Gamma and Exponential Distribution

If we let X be the number of components functioning at the end of 8 years, then, X is binomial with $n=5$ and $p=0.2$.

$$
\begin{aligned}
P\{X \geq 2\} & =1-P\{X \leq 1\} \\
& =1-\sum_{x=0}^{1}\binom{5}{x}(0.2)^{x}(1-0.2)^{5-x} \\
& =0.2627
\end{aligned}
$$

Gamma and Exponential Distribution

The mean and variance of the gamma distribution are

$$
\mu=\alpha \beta \text { and } \sigma^{2}=\alpha \beta^{2}
$$

The mean and variance of the exponential distribution are

$$
\mu=\beta \text { and } \sigma^{2}=\beta^{2}
$$

Chi-Square Distribution

PDF of the chi-squared distribution is given by

$$
f(x ; v)=\left\{\begin{array}{cc}
\frac{x^{\frac{v}{2}-1} e^{-\frac{x}{2}}}{2^{v / 2} \Gamma\left(\frac{v}{2}\right)}, & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

where the degrees of freedom $v \in \mathbb{Z}^{+}$.
The mean and the variance of the chi-squared distribution are

$$
\mu=v \text { and } \sigma^{2}=2 v
$$

Beta Distribution

PDF of the beta distribution is

$$
f(x ; \alpha, \beta)=\left\{\begin{array}{cl}
\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}, & 0<x<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

where $\alpha>0$ and $\beta>0$, and B is the beta function defined as

$$
\mathrm{B}(\alpha, \beta)=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

where $\alpha>0$ and $\beta>0$

Beta Distribution

The mean and the variance of the beta distribution are

$$
\mu=\frac{\alpha}{\alpha+\beta}
$$

and

$$
\sigma^{2}=\frac{\alpha \beta}{(\alpha+\beta)(\alpha+\beta+1)}
$$

Log-Normal Distribution

PDF of the log-normal distribution is given by

$$
f(x ; \mu, \sigma)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{2 \pi \sigma^{2} x^{2}}} e^{-\frac{[\ln (x)-\mu]^{2}}{2 \sigma^{2}}}, & x \geq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

where $Y=\ln (X)$.
The mean and variance of the log-normal distribution are

$$
\mu=e^{\mu+\sigma^{2} / 2} \text { and } \sigma^{2}=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
$$

Log-Normal Distribution

Weibull Distribution ($\alpha=1$)

PDF of the Weibull distribution is given by

$$
f(x ; \alpha, \beta)=\left\{\begin{array}{cc}
\alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}}, & x>0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Where $\alpha>0$ and $\beta>0$.

Weibull Distribution ($\alpha=1$)

Weibull Distribution

The mean and variance of the Weibull distribution are

$$
\mu=\alpha^{-1 / \beta} \Gamma\left(1+\frac{1}{\beta}\right)
$$

and

$$
\sigma^{2}=\alpha^{-2 / \beta}\left\{\Gamma\left(1+\frac{2}{\beta}\right)-\left[\Gamma\left(1+\frac{1}{\beta}\right)\right]^{2}\right\}
$$

End of Lecture

Thank you! Questions?

