Probability and Statistics Lecture 2: Probability

to accompany
Probability and Statistics for Engineers and Scientists Fatih Cavdur

Chapter 2: Probability

- Sample Space
- Events
- Counting Sample Points
- Probability of an Event
- Conditional Probability
- Bayes' Rule

Sample Space

The set of all possible outcomes of a statistical experiment is called the sample space and is represented by the symbol S.

Sample Space

- When we flip a coin,

$$
S=\{h, t\}
$$

- When we toss a die,

$$
S=\{1,2, \ldots, 6\}
$$

- If the sample space is the interior of a circle of radius 3 with the center at the origin

$$
S=\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right\}
$$

Sample Space

- An experiment is performed as follows: We first flip a coin. If the coin is head, we flip it again. Otherwise, we toss a die. An experiment like this can be represented by the following tree diagram.

Sample Space

- Suppose that 3 items are selected at random from a manufacturing process. Each one is inspected and classified as defective (D) or non-defective (N). The corresponding tree diagram for the process is shown.

Events

An event is a subset of a sample space.
The complement of an event A with respect to S is the subset of all elements of S that are not in A. We denote the complement of A by the symbol A^{\prime}.

The intersection of two events A and B, denoted by the symbol $A \cap B$, is the event containing all elements that are common to A and B.

Two events A and B are mutually exclusive, or disjoint, if $A \cap B=\phi$, that is, if A and B have no elements in common.

The union of the two events A and B, denoted by the symbol $A \cup B$, is the event containing all the elements that belong to A or B or both.

Events Represented by Venn Diagrams

Let

$$
\begin{aligned}
& A=\{1,2,4,7\} \\
& B=\{1,2,3,6\} \\
& C=\{1,3,4,5\}
\end{aligned}
$$

We can then write
$A \cup B=\{1,2,3,4,6,7\}$
$A \cup C=\{1,2,3,4,5,7\}$
$A \cap B=\{1,2\}$

$A \cap B^{\prime}=\{4,7\}$
$(A \cup B) \cap C^{\prime}=\{2,6,7\}$

Counting Sample Points

If an operation can be performed in n_{1} ways, and if for each of these a second operation can be performed in n_{2} ways, and for each of the first two a third operation can be performed in n_{3} ways, and so forth, then the sequence of k operations can be performed in $n_{1} n_{2} \cdots n_{k}$ ways.

A permutation is an arrangement of all or part of a set of objects.
For any non-negative integer n, n !, called " n factorial," is defined as

$$
n!=n(n-1) \cdots(2)(1),
$$

with special case $0!=1$.

Counting Sample Points

The number of permutations of n objects is $n!$.
The number of permutations of n distinct objects taken r at a time is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

The number of permutations of n objects arranged in a circle is $(n-1)$!.
The number of distinct permutations of n things of which n_{1} are of one kind, n_{2} of a second kind, ..., n_{k} of a k th kind is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

Counting Sample Points

The number of distinct permutations of n things of which n_{1} are of one kind, n_{2} of a second kind, ..., n_{k} of a k th kind is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

The number of ways of partitioning a set of n objects into r cells with n_{1} elements in the first cell, n_{2} elements in the second, and so forth, is

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

where $n_{1}+n_{2}+\cdots+n_{r}=n$.
The number of combinations of n distinct objects taken r at a time is

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Probability of an Event

The probability of an event A is the sum of the weights of all sample points in A. Therefore,

$$
0 \leq P(A) \leq 1, \quad P(\phi)=0, \quad \text { and } \quad P(S)=1
$$

Furthermore, if $A_{1}, A_{2}, A_{3}, \ldots$ is a sequence of mutually exclusive events, then

$$
P\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)+\cdots
$$

If an experiment can result in any one of N different equally likely outcomes, and if exactly n of these outcomes correspond to event A, then the probability of event A is

$$
P(A)=\frac{n}{N}
$$

Probability of Union of Events

If A and B are two events, then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

If A and B are mutually exclusive, then

$$
P(A \cup B)=P(A)+P(B)
$$

If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually exclusive, then

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right) .
$$

Probability of Union of Events

If $A_{1}, A_{2}, \ldots, A_{n}$ is a partition of sample space S, then

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right)=P(S)=1
$$

For three events A, B, and C,

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A)+P(B)+P(C) \\
& -P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

If A and A^{\prime} are complementary events, then

$$
P(A)+P\left(A^{\prime}\right)=1
$$

Conditional Probability

The conditional probability of B, given A, denoted by $P(B \mid A)$, is defined by

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}, \quad \text { provided } \quad P(A)>0
$$

Conditional Probability

- Suppose that our sample space is the population of adults in a small town who have completed the requirements for a collage degree. If we categorize them according to gender and employment status, we have the following results:

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

Conditional Probability

- If we select someone at random, and define the following events:
- M: a man is chosen
- W : a woman is chosen
- E : the one chosen is employed
- U : the one chosen is unemployed
- We can then, for instance, compute the probability that a man is chosen given that the one chosen is employed as follows:

$$
P(M \mid E)=\frac{P(M \cap E)}{P(E)}=\frac{460}{600}=\frac{23}{30}
$$

Independent Events

Two events A and B are independent if and only if

$$
P(B \mid A)=P(B) \quad \text { or } \quad P(A \mid B)=P(A)
$$

assuming the existences of the conditional probabilities. Otherwise, A and B are dependent.

If in an experiment the events A and B can both occur, then

$$
P(A \cap B)=P(A) P(B \mid A), \text { provided } P(A)>0
$$

Example 2.37

- A bag contains 4 white and 3 black balls, and another one contains 3 white and 5 black balls. A ball is drawn from the first bag and put unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?
- We first let $B_{1}, B_{2}, W_{1}, W_{2}$ be the events that the ball drawn from the first bag is black, from the second bag is black, etc.
- We then need to compute the probability of

$$
P\left[\left(B_{1} \cap B_{2}\right) \cup\left(W_{1} \cap B_{2}\right)\right]=P\left(B_{1} \cap B_{2}\right)+P\left(W_{1} \cap B_{2}\right)
$$

- Can we write the above expression? Why?

Example 2.37

$$
\begin{aligned}
P\left(B_{1} \cap B_{2}\right)+P\left(W_{1} \cap B_{2}\right) & =P\left(B_{1}\right) P\left(B_{2} \mid B_{1}\right)+P\left(B_{1}\right) P\left(B_{2} \mid B_{1}\right) \\
& =\frac{3}{7} \frac{6}{9}+\frac{4}{7} \frac{5}{9}
\end{aligned}
$$

Fatih Cavdur - fatihcavdur@uludag.edu.tr

Example 2.39

- Find the probability that
- the following electrical system works.
- component C does not work given that the system works.

Example 2.39

The desired probability is computed as follows:

$$
\begin{aligned}
P[A \cap B \cap(C \cup D)] & =P(A) P(B) P(C \cup D) \\
& =P(A) P(B)\left[1-P\left(C^{\prime}\right) P\left(D^{\prime}\right)\right] \\
& =(.9)(.9)[1-(1-.8)(1-.8)] \\
& =.7776
\end{aligned}
$$

Independent Events

If, in an experiment, the events $A_{1}, A_{2}, \ldots, A_{k}$ can occur, then

$$
\begin{aligned}
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right) \\
& \quad=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots P\left(A_{k} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{k-1}\right) .
\end{aligned}
$$

If the events $A_{1}, A_{2}, \ldots, A_{k}$ are independent, then

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{k}\right)
$$

A collection of events $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ are mutually independent if for any subset of $\mathcal{A}, A_{i_{1}}, \ldots, A_{i_{k}}$, for $k \leq n$, we have

$$
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{k}}\right)
$$

Bayes' Rule

If the events $B_{1}, B_{2}, \ldots, B_{k}$ constitute a partition of the sample space S such that $P\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots, k$, then for any event A of S,

$$
P(A)=\sum_{i=1}^{k} P\left(B_{i} \cap A\right)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

(Bayes' Rule) If the events $B_{1}, B_{2}, \ldots, B_{k}$ constitute a partition of the sample space S such that $P\left(B_{i}\right) \neq 0$ for $i=1,2, \ldots, k$, then for any event A in S such that $P(A) \neq 0$,

$$
P\left(B_{r} \mid A\right)=\frac{P\left(B_{r} \cap A\right)}{\sum_{i=1}^{k} P\left(B_{i} \cap A\right)}=\frac{P\left(B_{r}\right) P\left(A \mid B_{r}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)} \text { for } r=1,2, \ldots, k
$$

Bayes' Rule

- In a plant machines M1, M2 and M3 make the 30\%, 45\% and 25% of the products, respectively. It is known that the defective rates of these machines are $2 \%, 3 \%$ and 2%, respectively. What is the probability that, if a randomly chosen product is defective, it was made by machine M3?

Bayes' Rule

- We need to compute the following probability using the Bayes' rule:

$$
\begin{aligned}
P\left(B_{3} \mid D\right) & =\frac{P\left(B_{3} \cap D\right)}{P(D)} \\
& =\frac{P\left(B_{3}\right) P\left(D \mid B_{3}\right)}{P\left(B_{3}\right) P\left(D \mid B_{3}\right)+P\left(B_{3}\right) P\left(D \mid B_{3}\right)+P\left(B_{3}\right) P\left(D \mid B_{3}\right)} \\
& =\frac{.005}{.006+.0135+.005} \\
& =\frac{10}{49}
\end{aligned}
$$

Bayes' Rule

End of Lecture

Thank you! Questions?

