Probability and Statistics Lecture 1: Introduction to Data Analysis

to accompany

Probability and Statistics for Engineers and Scientists

Fatih Cavdur

Chapter 1: Introduction to Data Analysis

- Statistical Inference
- Samples, Populations
- The Role of Probability

Example 1.2

No Nitrogen	Nitrogen
0.32	0.26
0.53	0.43
0.28	0.47
0.37	0.49
0.47	0.52
0.43	0.75
0.36	0.79
0.42	0.86
0.38	0.62
0.43	0.46

- Study to develop a relationship between the roots of trees and the action of a fungus.
- Minerals are transferred from the fungus to the trees and sugar from the trees to the fungus.
- 2 samples of 10 seedlings planted treated with nitrogen and nonitrogen where all other conditions were held constant.
- Stem weights are recorded in grams after the end of 140 days as shown in the table.

Example 1.2 (cont.)

- A dot plot of stem weight data is shown below where "o" and "x" correspond to nitrogen and no nitrogen, respectively.
- How do you interpret the plot?

Probability and Statistical Inference

Fatih Cavdur – fatihcavdur@uludag.edu.tr

Sampling Procedures: Data Collection

- Simple Random Sampling implies that any particular sample of a specified sample size has the same chance of being selected as any other sample of the same size.
- If it is not true, we can mention a *biased sample*.
- The concept of randomness or random assignment plays a huge role in the area of *experimental design*.
- In Example 1.2, we can mention two different of variability in the experiment, within a group and between the groups. What do they mean?

Example 1.3

- A corrosion study was made in order to determine whether coating an aluminum metal with a corrosion retardation substance reduced the amount of corrosion.
- Also the influence of humidity on the amount of corrosion is of interest.
- A corrosion measurement can be expressed in thousands of cycles to failure.
- 2 levels of 2 factors considered:
 - Factor 1: Coating; Levels: Coating and No Coating
 - Factor 2: Humidity; Levels: 20% Humidity and 80% Humidity

Example 1.3 (cont.)

		Average Corrosion in
$\mathbf{Coating}$	Humidity	Thousands of Cycles to Failure
Uncosted	20%	975
Uncoated	80%	350
Chamical Corresion	20%	1750
Chemical Corrosion	80%	1550
2000		
	•	Chemical Corrosion Coating
Average Corrosion – 0001		Uncoated
0	20%	80%

Humidity

Measures of Location: Mean and Median

Suppose that the observations in a sample are x_1, x_2, \ldots, x_n . The **sample mean**, denoted by \bar{x} , is

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}.$$

Given that the observations in a sample are x_1, x_2, \ldots, x_n , arranged in **increasing** order of magnitude, the sample median is

$$\tilde{x} = \begin{cases} x_{(n+1)/2}, & \text{if } n \text{ is odd,} \\ \frac{1}{2}(x_{n/2} + x_{n/2+1}), & \text{if } n \text{ is even.} \end{cases}$$

Measures of Location: Mean and Median (cont.)

- In Example 1.2, the sample mean is computed as $\bar{x} = 0.565$ whereas the median is $\tilde{x} = \frac{0.49+0.52}{2} = 0.505$ within with nitrogen sample.
- Note that the mean is influenced considerably by the extremes whereas the median places emphasis on the true center of the data set.

Measures of Variability: Variance & Std. Dev.

The sample variance, denoted by s^2 , is given by

$$s^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})^{2}}{n-1}.$$

The sample standard deviation, denoted by s, is the positive square root of s^2 , that is,

$$s = \sqrt{s^2}.$$

Measures of Variability: Variance & Std. Dev.

Assume that we are given the following data:

7.07; 7.00; 7.10; 6.97; 7.00; 7.03; 7.01; 7.01; 6.98; 7.08 The mean is

$$\bar{x} = \frac{7.07 + 7.00 + \dots + 7.08}{10} = 7.025$$

and the variance of the above data is

$$s^{2} = \frac{(7.07 - 7.025)^{2} + \dots + (7.08 - 7.025)^{2}}{9} = 0.001939$$

So the sample standard deviation is $s = \sqrt{0.001939} = 0.044$ with n - 1 = 9 degrees of freedom.

Graphical Diagnostics

- Scatter Plots
- Stem-and-Leaf Plot
- Histogram
- Box-and-Whisker or Box Plot

Scatter Plot

- Consider the data in Table 1.3 where 5 cloth specimens are manufactured for each of the 4 cotton percentages.
- What do you want to visualize here, and how can you do it?

Cotton Percentage	Tensile Strength
15	7,7,9,8,10
20	19,20,21,20,22
25	21,21,17,19,20
30	8,7,8,9,10

Scatter Plot (cont.)

• Scatter Plot of Tensile Strength and Cotton Percentages

Stem-and-Leaf Plot

• Consider the data in Table 1.4 where the lives of 40 similar car batteries recorded to the nearest tenth of a year.

2.2	4.1	3.5	4.5	3.2	3.7	3.0	2.6
3.4	1.6	3.1	3.3	3.8	3.1	4.7	3.7
2.5	4.3	3.4	3.6	2.9	3.3	3.9	3.1
3.3	3.1	3.7	4.4	3.2	4.1	1.9	3.4
4.7	3.8	3.2	2.6	3.9	3.0	4.2	3.5

Stem-and-Leaf Plot (cont.)

• Stem-and-Leaf Plot of Car Battery Life

Stem	Leaf	Frequency
1	69	2
2	25669	5
3	0011112223334445567778899	25
4	11234577	8

Stem-and-Leaf Plot (cont.)

• Double Stem-and-Leaf Plot of Car Battery Life

Stem	Leaf	Frequency
$1 \cdot$	69	2
$2\star$	2	1
$2\cdot$	5669	4
$3\star$	001111222333444	15
$3\cdot$	5567778899	10
$4\star$	11234	5
$4\cdot$	577	3

Histogram

• A table listing the frequencies is called a relative frequency distribution as shown below for the car battery life data:

Class	Class	Frequency,	Relative
Interval	$\mathbf{Midpoint}$	f	Frequency
1.5 - 1.9	1.7	2	0.050
2.0 – 2.4	2.2	1	0.025
2.5 – 2.9	2.7	4	0.100
3.0 – 3.4	3.2	15	0.375
3.5 – 3.9	3.7	10	0.250
4.0 - 4.4	4.2	5	0.125
4.5 – 4.9	4.7	3	0.075

Histogram (cont.)

• Relative Frequency Histogram of Car Battery Life Data

Histogram (cont.)

• Can you estimate the underlying distribution from the data?

Fatih Cavdur – fatihcavdur@uludag.edu.tr

Box-and-Whisker Plot or Box Plot

• Nicotine content was measured in a random sample of 40 cigarettes as follows:

1.09	1.92	2.31	1.79	2.28	1.74	1.47	1.97
0.85	1.24	1.58	2.03	1.70	2.17	2.55	2.11
1.86	1.90	1.68	1.51	1.64	0.72	1.69	1.85
1.82	1.79	2.46	1.88	2.08	1.67	1.37	1.93
1.40	1.64	2.09	1.75	1.63	2.37	1.75	1.69

Box-and-Whisker Plot or Box Plot (cont.)

• Box-and-Whisker Plot for Nicotine Data

Box-and-Whisker Plot or Box Plot (cont.)

• Box-and-Whisker Plot for Nicotine Data

End of Lecture

Thank you! Questions?

Fatih Cavdur – fatihcavdur@uludag.edu.tr