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Stochastic Programming

I Stochastic Programming (SP) is an approach to for modeling
problems that involve uncertainty.

I Although deterministic problems are formulated with known
parameters, real-life problems often include parameters that
are unknown at the time a decision should be made.

I When the parameters are uncertain, but assume some given
set of possible values, we can seek a solution that is feasible
for all possible parameter choices and optimizes a given
objective function.



Stochastic Programming
Example

A company has to decide an order quantity x of a certain product
to satisfy demand d . The cost of ordering is c > 0 per unit. If the
demand is greater than the order quantity, a back order penalty of
b ≥ 0 per unit is incurred. If the demand is less than the order
quantity, the company has a holding cost of h ≥ 0 per unit. The
total cost to minimize is then written as

G (x , d) = cx + b[d − x ]+ + h[x − d ]+

= max {(c − b)x + bd , (c + h)x − hd}

Stochastic Programming
Example

We want to minimize the total cost.

min
x≥0

G (x , d)

For a numerical instance, if c = 1, b = 1.5 and h = 0.1,

G (x , d) =

{
−0.5x + 1.5d , x < d

1.1x − 0.1d , x ≥ d



Stochastic Programming
Example

If we must make the decision before a realization of the demand
becomes known, we can view the demand D as a random variable
whose probability distribution is known. We can then write the
corresponding optimization problem

min
x≥0

E[G (x , d)]

which minimizes the total cost on average. If the process repeats
itself, by the Law of Large Numbers, for a given x , the average of
the total cost will converge to the expectation.

Stochastic Programming
Example

A simple example of a recourse action is as follows:

I At the first stage, before the realization of the demand D, a
decision is made about the ordering quantity, x .

I At the second stage, after the demand D is known, it may
happen that d > x .

I In that case, the demand can be met by taking the recourse
action of ordering the required quantity d − x at a penalty
cost of b > c .



Stochastic Programming
Example

Example problem can be solved in closed form. It is possible to
show that

E[G (x ,D)] = bE[D] + (c − b)x + (b + h)

∫ x

0
F (z)dz

By setting,

dE[G (x ,D)]

dx
= 0⇒ (b + h)F (x) + c − b = 0⇒ x = F−1(κ)

where κ is the quantile defined as

κ =
b − c

b + h

Stochastic Programming
Example

I Suppose that the RV D has a discrete distribution assuming
values d1, . . . , dK (scenarios) with respective probabilities
p1, . . . , pK .

I The corresponding CDF is viewed as the empirical CDF giving
an approximation or estimation of the true CDF, and the
associated κ-quantile is viewed as the sample estimate of the
κ-quantile associated with the true distribution.

I If we compare the quantile solution to the x̄ with a solution
corresponding to one scenario d = d̄ , where d̄ is, say, the
expected value of RV D.

I The solution of such deterministic problem is d̄ which can
very different from the κ-quantile of x̄ .



Stochastic Programming
Example

A closed-form solution as in the example is rarely available. As a
result, in case of finitely many scenarios, it is possible to model the
stochastic program as a deterministic problem, by writing the
expected value as the weighted sum

E[G (x ,D)] =
K∑

k=1

pkG (x , dk)

Stochastic Programming
Example

The deterministic formulation corresponds to one scenario d with
probability 1 which can be written

min
x ,t

t

subject to

t ≥ (c − b)x + bd

t ≥ (c + h)x + hd

x ≥ 0



Stochastic Programming
Example

Similarly, the expected value problem with scenarios d1, . . . , dK can
be written as the following linear program.

min
x ;t1,...,tK

K∑

k=1

pktk

subject to

tk ≥ (c − b)x + bdk , k = 1, . . .K

tk ≥ (c + h)x + hdk , k = 1, . . .K

x ≥ 0

Stochastic Programming
Example

I Using approximations by scenarios is an attractive approach
for attacking SPPs.

I We can investigate the convergence of the solution of such a
scenario approximation.

I We also note the ”almost-separable” structure of the problem.

I That is, for fixed x , the problem is separable into the sum of
optimal values of problems with d = dk .

I Such separable structure is typical for two-stage linear SPPs.



Stochastic Programming
Example

To compare the exact solution of the problem with the scenario
solution with c = 1.0, b = 1.5 and h = 0.1, suppose that D is
uniformly distributed between 1 and 100. We can then write

E[G (x ,D)] = bE(D) + (c − b)x + (b + h)

∫ x

0
F (z)dz

= 75− 0.5x + 0.008x2

Stochastic Programming
Example

If the demand is approximated by a discrete distribution with
equally likely scenarios d1 = 20 and d2 = 80,

E[G (x ,D)] =
1

2

2∑

k=1

G (x , dk)

What if we have 3 scenarios with d1 = 20 , d2 = 50 and d3 = 80?



Two-Stage Stochastic Programming

We can formulate the classical two-stage stochastic programming
problems as

min
x∈X
{g(x) := cx + E[Q(x , ξ)]}

where Q(x , ξ) is the optimal value of the second-stage problem

min
y

qy : Tx + Wy ≤ h

where x is the first-stage decision vector, X is a polyhedral set, y
is the second-stage decision vector and ξ = (q,T ,W , h) is the
second-stage problem data.

Two-Stage Stochastic Programming

I At the first stage, we make a “here-and-now” decision before
the realization of the uncertain data ξ is known.

I At the second stage, after a realization of ξ becomes available,
we optimize our behavior by solving an appropriate problem.

I Note that, at the first stage, we minimize the cost cx of the
first-stage decision plus the expected cost of the (optimal)
second-stage decision.

I We can then view the second-stage problem simply an
optimization problem which describes our supposedly optimal
behavior when the uncertain data is revealed.

I Or, we can consider its solution as a recourse action where the
term Wy compensates for a possible inconsistency of the
system Tx ≤ h and qy is the cost of this recourse action.



Two-Stage Stochastic Programming

I The formulation involves the assumption that the
second-stage data ξ can be modeled as a random vector with
a known probability distribution.

I This would be justified in situations where the problem is
solved repeatedly under random conditions which do not
significantly change over the considered period of time.

I In such situations, we can estimate the required distribution
and the optimization on average could be justified the Law of
Large Numbers.

Two-Stage Stochastic Programming

To solve the problem numerically, the standard approach is to
assume that random vector ξ has a finite number of possible
realizations, called scenarios, say ξ1, . . . , ξK , with respective
(positive) probabilities p1, . . . , pK . We can then write the
expectation as

E[Q(x , ξ)] =
K∑

k=1

pkQ(x , ξk)



Two-Stage Stochastic Programming

We can then write the two-stage problem as

min
x ;y1,...,yK

cx +
K∑

k=1

qkyk

subject to

x ∈ X , Tkx + Wkyk ≤ hk , k = 1, . . . ,K

Two-Stage Stochastic Programming

Note that, in this formulation, we make one copy yk , of the second
stage decision vector, for every scenario ξk = (qk ,Tk ,Wk , hk). By
solving the problem, we obtain an optimal solution x̄ of the
first-stage problem and optimal solutions ȳk of the second-stage
for each scenario ξk , k = 1, . . . ,K . Given x̄ , each yk gives an
optimal second-stage decision corresponding to a realization ξ = ξk
of the respective scenario.



Two-Stage Stochastic Programming
Example

Recall the inventory model with K scenarios written as follows,
where x and tk , k = 1, . . . ,K are the first and second-stage
decisions, respectively.

min
x ;t1,...,tK

0x +
K∑

k=1

pktk

subject to

(c − b)x − tk ≤ −bdk , k = 1, . . .K

(c + h)x − tk ≤ +hdk , k = 1, . . .K

x ≥ 0

Two-Stage Stochastic Programming

When ξ has an infinite (or very large) number of possible
realizations, then, we can represent this distribution by scenarios.
We should then answer,

I How to construct scenarios?

I How to solve the LP?

I How to measure the quality of the solutions with respect to
the ‘true’ optimum?



Scenario Construction

I In practice, it might be possible to construct scenarios by
eliciting experts’ opinion on the future.

I We would like the number of constructed scenarios to be
relatively modest so that the obtained LP requires reasonable
computation effort.

I It is often claimed that a solution that is optimal using a few
scenarios is better than the one that assumes a single scenario
only.

I In some cases, such a claim could be verified by a simulation.

Scenario Construction

I In theory, we would want some measure of guarantee that an
obtained solution solves the original problem with reasonable
accuracy.

I Also note that typically in applications only the first stage
optimal solution x̄ has a practical value since almost certainly
a ‘true’ realization of the random (uncertain) data will be
different from the set of constructed scenarios.



Scenario Construction

I The modeler has two somewhat contradictory goals.

I First of all, the number of scenarios should be
computationally manageable.

I Secondly, the constructed approximation should provide a
reasonably accurate solution to the problem.

I A possible approach to reconcile these contradictory goals is
randomization, and thus, scenarios could be generated by
Monte-Carlo sampling techniques.

Scenario Construction

I For some feasible x ∈ X and a scenario ξk , the problem might
be unbounded, i.e., Q(x , ξk) = −∞.

I It means that for such a feasible x , we can improve with a
positive probability the second-stage cost indefinitely.

I We should make sure that such a situation does not happen.

I Another problem is that for some feasible x ∈ X and scenario
ξk , the second-stage problem is infeasible.

I In that case, we can set Q(x , ξk) = +∞.

I It is said that the problem has relatively complete recourse if
such infeasibility does not happen.



Scenario Construction

It is always possible to make the second-stage problem feasible
(complete recourse) by changing it as

min
y ,t

qy + γt : Tx + Wy − te ≤ h, t ≥ 0

where γ is constant and e is a vector-of-ones of appropriate
dimension.

Monte Carlo Techniques

I We can decrease the number of scenarios by using Monte
Carlo simulation.

I Suppose that the total number of scenarios is very large or
infinite.

I Suppose also that we can generate ξ1, . . . , ξN of N
replications of the random vector ξ which are IID.



Monte Carlo Techniques

We can approximate the expectation function q(x) = E[Q(x , ξ)]
by the average

q̂N(x) = N−1
N∑

j=1

Q(x , ξj)

and consequently the ‘true’ (expectation) problem by

min
x∈X



ĝN(x) = cx +

1

N

N∑

j=1

Q(x , ξ)





which is known as the sample average approximation (SAA)
method.

Monte Carlo Techniques
Example

We can illustrate the SAA method on the instance of the inventory
example. Note that

G (x ,D) =

{
−0.5x + 1.5D, x < D

1.1x − 0.1D, x ≥ D

where D ∼ U (0, 100). We can show SAA approximations for 3
random samples, two with N = 5 and one with N = 10 as

ξj = 15, 60, 72, 78, 82 and ξj = 24, 24, 32, 41, 62

and

ξj = 8, 10, 21, 47, 62, 63, 75, 78, 79, 83



Evaluating Candidate Solutions

Given a feasible point x̂ ∈ X obtained by solving a SAA problem, a
practical problem is how to evaluate the quality of this point. Since
the point x̂ is feasible, we clearly have that g(x̂) ≥ v∗, where

v∗ = min
x∈X

g(x)

is the optimal solution for the ‘true’ problem. The quality of the
solution can be measured by the optimality gap

gap (x̂) = g(x̂)− v∗

Multi-Stage Stochastic Programming

The stochastic programming models up to this point are static in
the sense that we made a (supposedly optimal) decision at one
point in time, while accounting for possible recourse actions after
all uncertainty has been resolved.
There are many situations where decisions should be made
sequentially at certain periods of time based on information
available at each time period.
Such multi-stage stochastic programming problems can be viewed
as an extension of two-stage stochastic programming to a
multi-stage setting.



Multi-Stage Stochastic Programming
Example

In the inventory model, suppose that the company has a planning
horizon of T periods of time. We view demand Dt as a random
process indexed by the time t = 1, . . . ,T . At t = 1, there is a
(known) inventory level y1, and at each period, the company first
observes the current inventory level yt and then places an order to
replenish the inventory level to xt .

min
xt≥yt

T∑

t=1

E {ct(xt − yt) + bt [Dt − xt ]+ + ht [xt − Dt ]+}

subject to

yt+1 = xt − Dt , t = 1, . . . ,T − 1

Multi-Stage Stochastic Programming
Example

At the last stage, t = T ,

min
xT

cT (xT − yT )+E {bT [DT − xT ]+ + hT [xT − DT ]+|DT−1 = dT−1}

subject to xT ≥ yT with its optimal denoted as VT (yT , d[T−1]).
Similarly, at the first stage, t = 1,

min
x1≥y1

c1(x1 − y1)+E {b1[D1 − x1]+ + h1[x1 − D1]+ + V2(x1 − D1,D1)}



Thanks... Questions?


