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Introduction

I We study a class of models in which customers arrive in some
random manner at a service facility.

I Upon arrival they are made to wait in queue until it is their
turn to be served.

I Once served, they are generally assumed to leave the system.

I For such models, we are interested in determining, among
other things, such quantities as the average number of
customers in the system (or in the queue) and the average
time a customer spends in the system (or in the queue).

Preliminaries

Some fundamental quantities of interest are

I L: the average number of customers in the system

I LQ : the average number of customer in the queue

I W : the average amount of time a customer spends in the
system

I WQ : the average amount of time a customer spends in the
queue



Introduction

Basic cost identity can be stated as
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where average arrival rate of entering customers (λa) is defined as

λa = lim
t→∞

N(t)

t

Introduction

Little’s Formula

L = λaW

LQ = λaWQ



Introduction

By assuming a unit cost per unit time (i.e., $1 per unit time) while
in service, we can write from the basic cost identity that

(
average number of customers

in service

)
= λaE (S)

where E (S) is defined as the average amount of time a customer
spends in service.

Steady-State Probabilities

Let X (t) be the number of customers in the system at time t, and
define Pn, n ≥ 0 by

Pn = lim
t→∞

P{X (t) = n}

where we assume the limit exists. We can say that Pn is the
limiting or long-run or steady-state probability that there will be
exactly n customers in the system. We also define the other
limiting probabilities {an, n ≥ 0} and {dn, n ≥ 0} where

I an: proportion of customers that find n in the system when
they arrive

I bn: proportion of customers that leave behind n in the system
when they depart



A Single-Server Exponential Queuing System

For such a queuing system, we can write

state rate the process leaves rate the process enters

0 λP0 µP1

n, n ≥ 1 (λ+ µ)Pn λPn−1 + µPn+1

In order to solve the balance equations, we can write
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λ

µ
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µ
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)
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A Single-Server Exponential Queuing System

Solving in terms of P0, we get
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A Single-Server Exponential Queuing System

To determine P0,
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A Single-Server Exponential Queuing System

Finally,

WQ = W − E (S) = W − 1

µ
=

λ

µ(µ− λ)

and

LQ = λWQ =
λ2

µ(µ− λ)



A Single-Server Exponential Queuing System with Finite
Capacity

For such a queuing system, we can write

state rate the process leaves rate the process enters

0 λP0 µP1

1 ≤ n ≤ N − 1 (λ+ µ)Pn λPn−1 + µPn+1

N λPN−1 µPN

In order to solve the balance equations, we can write

Pn =
λ

µ
Pn−1 =

(
λ

µ

)2
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P0, n = 1, . . . ,N

A Single-Server Exponential Queuing System with Finite
Capacity

To determine P0,

∞∑

n=0

Pn =
∞∑

n=0

(
λ

µ

)n

P0 = P0

[
1− (λ/µ)N+1

1− λ/µ

]
= 1

We then have,

P0 =
1− λ/µ

1− (λ/µ)N+1
⇒ Pn =

(λ/µ)n(1− λ/µ)

1− (λ/µ)N+1
, n = 0, . . . ,N



A Single-Server Exponential Queuing System with Finite
Capacity

To determine L,

L =
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n=0

nPn

=
(1− λ/µ)
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n
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λ

µ
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A Shoeshine Shop

Consider a shoeshine shop consisting of two chairs. Suppose that
an entering customer first will go to chair 1. When his work is
completed in chair 1, he will go either to chair 2 if that chair is
empty or else wait in chair 1 until chair 2 becomes empty. Suppose
that a potential customer will enter this shop as long as chair 1 is
empty. (Thus, for instance, a potential customer might enter even
if there is a customer in chair 2.)
If we suppose that potential customers arrive in accordance with a
Poisson process at rate λ , and that the service times for the two
chairs are independent and have respective exponential rates of µ1
and µ2, then

I what proportion of potential customers enters the system?

I what is the mean number of customers in the system?

I what is the average amount of time that an entering customer
spends in the system?



A Shoeshine Shop

To begin we must first decide upon an appropriate state space. It
is clear that the state of the system must include more information
than merely the number of customers in the system. For instance,
it would not be enough to specify that there is one customer in the
system as we would also have to know which chair he was in.
Further, if we only know that there are two customers in the
system, then we would not know if the man in chair 1 is still being
served or if he is just waiting for the person in chair 2 to finish.

A Shoeshine Shop

We have the following state definitions:

I state (0, 0): no customers in the system

I state (1, 0): 1 customer in chair 1

I state (0, 1): 1 customer in chair 2

I state (1, 1): 2 customers both in service

I state (b, 1): 2 customers, first is done, second in service



A Shoeshine Shop

We can then write

(0, 0)⇒ λP00 = µ2P01

(1, 0)⇒ µ1P10 = λP00 + µ2P11

(0, 1)⇒ (λ+ µ2)P01 = µ1P10 + µ2Pb1

(1, 1)⇒ (µ1 + µ2)P11 = λP01

(b, 1)⇒ µ2Pb1 = µ1P11

and

P00 + P10 + P01 + P11 + Pb1 = 1

A Shoeshine Shop

After solving the equations, we can write

L = P10 + P01 + 2(P11 + Pb1)

and

W =
P10 + P01 + 2(P11 + Pb1)

λ(P00 + P01)



Open Systems

We have, for a 2-server open system,

(0, 0)⇒ λP00 = µ2P01

(n, 0)⇒ (λ+ µ1)Pn0 = µ2Pn1 + λPn−1,0
(0,m)⇒ (λ+ µ2)P0m = µ2P0,m+1 + µ1P1,m−1
(n,m)⇒ (λ+ µ1 + µ2)Pnm = µ2Pn,m+1 + µ1Pn+1,m−1 + λPn−1,m

and

∑

n

∑

m

Pnm = 1

Open Systems

We first note that, we have an M/M/1 model for the first server,
and since, the departure is a Poisson process with rate λ, we have
an M/M/1 model for the second server also. We thus have,

P{N1 = n} =
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λ
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)n (
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)

and
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)m (
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)



Open Systems

If the numbers of customers in the first and second servers are
independent random variables,

Pnm =
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By solving the balance equations, we can show, for instance,

λ

(
1− λ

µ1

)(
1− λ

µ2

)
= µ2

(
1− λ

µ1

)(
λ

µ2

)(
1− λ

µ2

)

Open Systems

We can then write,
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∑
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Open Systems

By generalizing the preceding, we have

λj = rj +
k∑

i

λiPij , ∀j ⇒ P{Nj = n} =
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)n (
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)
, n ≥ 1

and
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and
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Closed Systems

We assume that we have m customers moving among a system of
k servers where the service at server i is exponential with rate µi ,
i = 1, . . . , k . When a customer completes service at service i , she
then joins the queue in front of server j , j = 1, . . . , k , with
probability Pij . We assume that P = [Pij ] is a Markov TPM. We
also assume that it is irreducible.



Closed Systems

We can then show that

Pm(n1, . . . , nk) =

{
Cm
∏k

j=1 (πj/µj)
nj , if

∑k
j=1 nj = m

0, otherwise

where

Cm =
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General Service Time Distribution

For an arbitrary queuing system, let X be the amount paid by a
customer, and we can then write

V = λaE (X )

and then

E (X ) = E

[
SW ∗

Q +

∫ S

0
(S − x)dx

]
⇒ V = λaE (SW ∗

Q) +
λaE (S2)

2

= λaE (S)WQ +
λaE (S2)

2



General Service Time Distribution

For an M/G/1 system, since we have

WQ = V and V = λE (S)WQ +
λE (S2)

2

we can write the following Pollackzek-Khintchine formula as
follows.

WQ =
λE (S2)

2[1− λE (S)]

General Service Time Distribution

Using the following Pollackzek-Khintchine formula

WQ =
λE (S2)

2[1− λE (S)]

we can write

LQ = λWQ =
λ2E (S2)

2[1− λE (S)]

W = WQ + E (S) =
λE (S2)

2[1− λE (S)]
+ E (S)

L = λW =
λ2E (S2)

2[1− λE (S)]
+ λE (S)



General Time-Between Arrivals Distribution

For an G/M/1 system, we have

W =
1

µ(1− β)

WQ =
β

µ(1− β)

L =
λ

µ(1− β)

LQ =
λβ

µ(1− β)

Machine Repair Model

We can show, for the machine repair model, that

LQ =
m(m − 1)µR −m(1− π0)/λ

mµR + π0/λ

and

L =
m2µR −m(1− π0)/λ

mµR + π0/λ



Multi-Server Queues

I M/M/k

I G/M/k

I M/G/k

The End
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