
Continuous Time Markov Chains
Stochastic Processes - Lecture Notes

Fatih Cavdur

to accompany
Introduction to Probability Models

by Sheldon M. Ross

Fall 2015

Outline

Introduction

Continuous-Time Markov Chains

Birth and Death Processes

The Transition Probability Function

Limiting Probabilities



Introduction

In this chapter we consider a class of probability models that has a
wide variety of applications in the real world. The members of this
class are the continuous-time analogs of the Markov chains of
Chapter 4 and as such are characterized by the Markovian property
that, given the present state, the future is independent of the past.
One example of a continuous-time Markov chain is the Poisson
process of Chapter 5.

Continuous-Time Markov Chains

Suppose that we have a continuous-time stochastic process
{X (t), t ≥ 0} taking on values in the set of non-negative integers.
We can say that {X (t), t ≥ 0} is a continuous-time Markov chain
(CT-MC), if, for all s, t ≥ 0 and non-negative integers
i , j , x(u), 0 ≤ u < s

P{X (t+s) = j |X (s) = i ,X (u) = x(u)} = P{X (t+s) = j |X (s) = i}



Continuous-Time Markov Chains

In addition, if P{X (t + s) = j |X (s) = i} is independent of s, then,
the CT-MC is said to have stationary or homogenous transition
probabilities.
We assume that all MCs in this section have stationary transition
probabilities.

Continuous-Time Markov Chains

Another definition of a CT-MC is a stochastic process having the
properties that each time it enters state i

I the amount of time it spends in that state before making a
transition into a different state is exponentially distributed
with mean 1/vi , and

I when the process leaves state i , it next enters state j with
some probability, Pij where

Pii = 0, ∀i
∑

j

Pij = 1, ∀i



Continuous-Time Markov Chains

In other words, a CT-MC is a stochastic process that moves from
state to state in accordance with a (discrete-time) Markov chain,
but is such that the amount of time it spends in each state, before
proceeding to the next state, is exponentially distributed. In
addition, the amount of time the process spends in state i and the
next state it enters must be independent RVs

Example

(A Shoeshine Shop) Consider a shoeshine establishment consisting
of two chairs—chair 1 and chair 2. A customer upon arrival goes
initially to chair 1 where his shoes are cleaned and polish is
applied. After this is done the customer moves on to chair 2 where
the polish is buffed. The service times at the two chairs are
assumed to be independent random variables that are exponentially
distributed with respective rates µ1 and µ2, and the customers
arrive in accordance with a Poisson process with rate λ. We also
assume that a potential customer will enter the system only if both
chairs are empty.



Example

We can analyze this system as a CT-MC with a state space

State Description

0 system is empty
1 a customer is in chair 1
2 a customer is in chair 2

Example

We then have

v0 = λ, v1 = µ1, v2 = µ2

and

P01 = P12 = P20 = 1



Birth and Death Processes

Consider a system whose state at any time is represented by the
number of people in the system at that time. Suppose that
whenever there are n people in the system

I new arrivals enter the system at an exponential rate λn, and

I people leave the system at an exponential rate µn.

Such a system is called a birth and death (arrival and departure)
process (BDP or ADP) , and the parameters {λn}∞n=0 and {µn}∞n=1

are called birth (arrival) and death (departure) rates, respectively.

Birth and Death Processes

A BDP is thus a CT-MC with states {0, 1, . . .} for which
transitions from state n may go only to state n − 1 or state n + 1,
and

v0 = λ0; vi = λi + µi , i > 0

and

P01 = 1; Pi ,i+1 =
λi

λi + µi
, i > 0; Pi ,i−1 =

µi
λi + µi

, i > 0



Example (Poisson Process)

Consider a BDP for which

µn = 0, ∀n ≥ 0

λn = λ, ∀n ≥ 0

This is process in which no departures occur, and the time between
arrivals is exponentially distributed with mean 1/λ. Hence, this is
the Poisson process.

Birth and Death Process

A BDP for which µn = 0, ∀n is is said to be a pure birth process,
and a BDP for which λn = 0 , ∀n is said to be pure death process.



Example

A model in which

µn = nµ, n ≥ 1

λn = nλ+ θ, n ≥ 0

is called a linear growth process with immigration and used to
study biological systems. If X (t) is the population size at time t,
and if we assume that X (0) = i and let

M(t) = E [X (t)]

Example

Derive and solve a differential equation to determine M(t):

M(t + h) = E [X (t + h)]

= E{E [X (t + h)|X (t)]}

We can write

X (t+h) =





X (t + 1), w.p. [θ + X (t)λ]h + o(h)
X (t − 1), w.p. X (t)µh + o(h)
X (t), w.p. 1− [θ + X (t)λ+ X (t)µ]h + o(h)



Example

We then have

E [X (t + h)|X (t)] = X (t) + [θ + X (t)λ− X (t)µ]h + o(h)

E{E [X (t + h)|X (t)]} = E{X (t) + [θ + X (t)λ− X (t)µ]h + o(h)}
M(t + h) = M(t) + (λ− µ)M(t)h + θh + o(h)

M(t + h)−M(t)

h
= (λ− µ)M(t) + θ +

o(h)

h

lim
h→0

[
M(t + h)−M(t)

h

]
= lim

h→0

[
(λ− µ)M(t) + θ +

o(h)

h

]

dM(t)

dt
= (λ− µ)M(t) + θ

Example

If we define

h(t) = (λ− µ)M(t) + θ ⇒ dh(t)

dt
= (λ− µ)

dM(t)

dt

We can hence write

h′(t)

λ− µ = h(t)⇒ h′(t)

h(t)
= λ− µ

log [h(t)] = (λ− µ)t + c

h(t) = Ke(λ−µ)t



Example

In terms of M(t),

θ + (λ− µ)M(t) = Ke(λ−µ)t

To find K , we use that M(0) = i and for t = 0,

θ + (λ− µ)i = K ⇒ M(t) =
θ

λ− µ [e(λ−µ)t − 1] + ie(λ−µ)t

Note that, we have assumed that λ 6= µ. If λ = µ,

dM(t)

dt
= θ ⇒ M(t) = θt + i

Example

Suppose that customers arrive at a single-server service station in
accordance with a Poisson process having rate λ, and the
successive service times are assumed to be independent exponential
RVs with mean 1/µ. This is known as the M/M/1 queuing system
where the first and second M refer to the Poisson arrivals and the
exponential service times, both are Markovian, and 1 refers to the
number of servers.



Example

If we let X (t) be the number of customers in the system at time t,
then, {X (t), t ≥ 0} is a BDP process with with

µn = µ, n ≥ 1

λn = λ, n ≥ 0

Example

For a multi-server exponential queuing system with s servers, if we
let X (t) be the number of customers in the system at time t, then,
{X (t), t ≥ 0} is a BDP process with with

µn =

{
nµ, 1 ≤ n ≤ s
sµ, n > s

and

λn = λ, n ≥ 0



The Transition Probability Function

We let

Pij(t) = P{X (t + s) = j |X (s) = i}
be the probability that a process presently in state i will be in state
j after time t. Pij(t) are often called the transition probabilities of
the CT-MC.

The Transition Probability Function

Proposition

For a pure birth process with λi 6= λj when i 6= j , we have

Pij(t) =

j∑

k=i

e−λk t
j∏

r=i
r 6=k

λr
λr − λk

−
j−1∑

k=i

e−λk t
j−1∏

r=i
r 6=k

λr
λr − λk

, i < j

and

Pii (t) = e−λi t



Kolmogorov’s Backward Equations

Theorem: Kolmogorov’s Backward Equations

For all states i , j and times t ≥ 0,

P ′ij(t) =
∑

k 6=i

qikPkj(t)− viPij(t)

Example

The backward equations for the pure birth process are

P ′ij(t) = λiPi+1,j(t)− λiPij(t)



Example: Backward Equations for the BDP

P ′0j(t) = λ0P1j(t)− λ0P0j(t)

P ′ij(t) = (λi+µi )

[
λi

λi + µi
Pi+1,j(t) +

µi
λi + µi

Pi−1,j(t)

]
−(λi+µi )Pij(t)

or

P ′0j(t) = λ0[P1j(t)− P0j(t)]

P ′ij(t) = λiPi+1,j(t) + µiPi−1,j(t)− (λi + µi )Pij(t)

Kolmogorov’s Forward Equations

Theorem: Kolmogorov’s Forward Equations

Under suitable regularity conditions,

P ′ij(t) =
∑

k 6=j

qkjPik(t)− vjPij(t)



Kolmogorov’s Backward Equations

For the pure birth process, we have

P ′ij(t) = λj−1Pi ,j−1(t)− λjPij(t)

Noting that Pij(t) = 0 whenever j < i , we can write

P ′ii (t) = λiPi ,i (t)

and

P ′ij(t) = λj−1Pi ,j−1(t)− λjPij(t), j ≥ i + 1

Kolmogorov’s Backward Equations

For the BDP, we have

P ′i0(t) =
∑

k 6=0

qk0Pik(t)− λ0Pi0(t)

= µ1Pi ,1(t)− λ0Pi0(t)

P ′ij(t) =
∑

k 6=0

qkjPik(t)− (λj + µj)Pij(t)

= λj−1Pi ,j−1(t)− (λj + µj)Pij(t)



Limiting Probabilities

In analogy with a basic result in discrete-time Markov chains, the
probability that a continuous-time Markov chain will be in state j
at time t often converges to a limiting value that is independent of
the initial state. If we call this value Pj , then,

Pj ≡ lim
t→∞

Pij(t)

where we assume that the limit exists and is independent of the
initial state i .

Limiting Probabilities

To derive Pj using the forward equations, we can write

P ′ij(t) =
∑

k 6=j

qkjPik(t)− vjPij(t)

and

lim
t→∞

P ′ij(t) = lim
t→∞


∑

k 6=j

qkjPik(t)− vjPij(t)




=
∑

k 6=j

qkjPk − vjPj



Limiting Probabilities

We note that, since P ′ij(t) converges to 0, we can write

0 =
∑

k 6=j

qkjPk − vjPj ⇒ vjPj =
∑

k 6=j

qkjPk

We can then use the following to find the limiting probabilities:

vjPj =
∑

k 6=j

qkjPk , ∀j

1 =
∑

j

Pj

Limiting Probabilities for the BDP

We can write,

State 0: λ0P0 = µ1P1

State 1: (λ1 + µ1)P1 = µ2P2 + λ0P0

State 2: (λ2 + µ2)P2 = µ3P3 + λ1P1

. . . . . . . . .
State n: (λn + µn)Pn = µn+1Pn+1 + λn−1Pn−1



Limiting Probabilities for the BDP

By organizing, we obtain

λ0P0 = µ1P1

λ1P1 = µ2P2

λ2P2 = µ3P3

. . . = . . .

λnPn = µn+1Pn+1

Limiting Probabilities for the BDP

Solving in terms of P0,

P1 =
λ0
µ1

P0

P2 =
λ1λ0
µ2µ1

P0

P3 =
λ2λ1λ0
µ3µ2µ1

P0

. . . = . . .

Pn =
λn−1 . . . λ1λ0
µn . . . µ2µ1

P0



Limiting Probabilities for the BDP

Using that
∑∞

n=0 Pn = 1, we obtain

1 = P0 +
∞∑

n=1

λn−1 . . . λ1λ0
µn . . . µ2µ1

P0 ⇒ P0 =
1

1 +
∑∞

n=1
λn−1...λ1λ0
µn...µ2µ1

and so

Pn =
λ0λ1 . . . λn−1

µ1µ2 . . . µn
1

1+
∑∞

n=1

λn−1...λ1λ0
µn...µ2µ1

, n ≥ 1

Limiting Probabilities for the BDP

The foregoing equations also show us the necessary conditions for
the limiting probabilities to exist:

∞∑

n=1

λn−1 . . . λ1λ0
µn . . . µ2µ1

<∞

This condition also might be shown to be sufficient.



Limiting Probabilities

Let us reconsider the shoeshine shop of Example 6.1, and
determine the proportion of time the process is in each of the
states 0, 1, 2. Because this is not a birth and death process (since
the process can go directly from state 2 to state 0), we start with
the balance equations for the limiting probabilities.

Limiting Probabilities for the BDP

We can write,

State 0: λ0P0 = µ2P2

State 1: µ1P1 = λP0

State 2: µ2P2 = µ1P1



Limiting Probabilities for the BDP

We then write,

P1 =
λ

µ1
P0, P2 =

λ

µ2
P0

and

2∑

i=0

Pi = 1⇒ P0 =
µ1µ2

µ1µ2 + λ(µ1 + µ2)

and so

P1 =
λµ2

µ1µ2 + λ(µ1 + µ2)
, P1 =

λµ1
µ1µ2 + λ(µ1 + µ2)

Thanks! Questions?


