Exponential Distribution and Poisson Process
 Stochastic Processes - Lecture Notes

Fatih Cavdur
to accompany
Introduction to Probability Models by Sheldon M. Ross

Fall 2015

Outline

Introduction

Exponential Distribution
Properties of the Exponential Distribution

Poisson Process
Counting Process
Inter-Arrival and Waiting Time Distributions
Generalization of the Poisson Process

Introduction

In a mathematical model for a real-world phenomenon, we must make enough simplifying assumptions to enable us to handle the mathematics, but not so-many that the mathematical model no longer resembles the real-world phenomenon. One of these assumptions is to assume that certain RVs are exponentially distributed. A counting process that is related to the exponential distribution, namely, the Poisson process is also considered in this chapter.

Exponential Distribution

An RV X is said to have an exponential distribution with parameter $\lambda, \lambda>0$, if its PDF is given by

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x}, & x \geq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

or, if its CDF is given by

$$
F(X)=\int_{-\infty}^{x} f(y) d y=\left\{\begin{array}{cc}
1-e^{-\lambda x}, & x \geq 0 \\
0, & 0
\end{array}\right.
$$

Exponential Distribution

The mean of the exponential distribution is given by

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{+\infty} x f(x) d x \\
& =\int_{0}^{\infty} \lambda x e^{-\lambda x} d x \\
& =-\left.x e^{-\lambda x}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda x} d x \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Exponential Distribution

Second moment of the $\mathrm{RV} X$ is

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{+\infty} x^{2} f(x) d x \\
& =\int_{0}^{\infty} \lambda x^{2} e^{-\lambda x} d x \\
& =-\left.x^{2} e^{-\lambda x}\right|_{0} ^{\infty}+\int_{0}^{\infty} 2 x e^{-\lambda x} d x \\
& =\frac{2}{\lambda^{2}}
\end{aligned}
$$

Exponential Distribution

Variance of the $\mathrm{RV} X$ is

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =\frac{2}{\lambda^{2}}-\frac{1}{\lambda^{2}} \\
& =\frac{1}{\lambda^{2}}
\end{aligned}
$$

Exponential Distribution

The MGF of X is

$$
\begin{aligned}
\phi(t) & =E\left(e^{t X}\right) \\
& =\int_{0}^{\infty} \lambda e^{t x} e^{-\lambda x} \\
& =\frac{\lambda}{\lambda-t}, \quad t<\lambda
\end{aligned}
$$

Exponential Distribution

The moments of X are obtained using the MGF. For example,

$$
\begin{aligned}
E(X) & =\left.\frac{d \phi(t)}{d t}\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\frac{\lambda}{\lambda-t}\right)\right|_{t=0} \\
& =\left.\frac{\lambda}{(\lambda-t)^{2}}\right|_{t=0} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Exponential Distribution

The moments of X are obtained using the MGF. For example,

$$
\begin{aligned}
E\left(X^{2}\right) & =\left.\frac{d^{2} \phi(t)}{d t}\right|_{t=0} \\
& =\left.\frac{d^{2}}{d t}\left(\frac{\lambda}{\lambda-t}\right)\right|_{t=0} \\
& =\left.\frac{2 \lambda}{(\lambda-t)^{3}}\right|_{t=0} \\
& =\frac{2}{\lambda}
\end{aligned}
$$

Exponential Distribution

The variance can then also be computed as

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =\frac{2}{\lambda}-\frac{1}{\lambda} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Properties of the Exponential Distribution

An RV X is said to be without memory or memoryless if

$$
P\{X>s+t \mid X>t\}=P\{X>s\}, \quad \forall s, t \geq 0
$$

or equivalently,

$$
\frac{P\{X>s+t, X>t\}}{P\{X>t\}}=P\{X>s\}
$$

and, hence,

$$
P\{X>s+t\}=P\{X>s\} P\{X>t\}
$$

Properties of the Exponential Distribution

Hence, X is said to be without memory or memoryless if

$$
P\{X>s+t\}=P\{X>s\} P\{X>t\}
$$

and when X is exponentially distributed,

$$
P\{X>s+t\}=e^{-\lambda(s+t)}=e^{-\lambda s} e^{-\lambda t}=P\{X>s\} P\{X>t\}
$$

Example

Suppose that the amount of time one spends in a bank is exponentially distributed with with mean 10 minutes. What is the probability that a customer will spend more than 15 minutes in the bank? What is the probability that a customer will spend more than 15 minutes in the bank given that she is still in the bank after 10 minutes?

Example

The probability that a customer will spend more than 15 minutes in the bank is

$$
P\{X>15\}=1-F(15)=e^{-15 \lambda}=e^{-3 / 2}
$$

which is approximately equal to 0.220 . The probability that a customer will spend more than 15 minutes in the bank given that she is still in the bank after 10 minutes is

$$
P\{X>15 \mid X>10\}=P\{X>5\}=1-F(5)=e^{-5 \lambda}=e^{-1 / 2}
$$

which is approximately 0.604 .

Properties of Exponential Distribution

Let X_{1}, \ldots, X_{n} be IID exponential RV s with rate λ. It follows that the distribution of X_{1}, \ldots, X_{n} is gamma with parameters n and λ. By using induction, we can prove that. Since nothing to do for $n=1$, we assume that $X_{1}+\ldots+X_{n-1}$ has a gamma distribution with $n-1$ and λ.

Properties of Exponential Distribution

Assume that $X_{1}+\ldots+X_{n-1} \sim$ gamma $(n-1, \lambda)$:

$$
f_{X_{1}+\ldots+X_{n-1}}(t)=\frac{\lambda e^{-\lambda t}(\lambda t)^{n-2}}{(n-2)!}
$$

and hence,

$$
\begin{aligned}
f_{X_{1}+\ldots+X_{n}}(t) & =\int_{0}^{\infty} f_{X_{n}}(t-s) f_{X_{1}+\ldots+X_{n-1}}(s) d s \\
& =\int_{0}^{t} \lambda e^{-\lambda(t-s)} \frac{\lambda e^{-\lambda s}(\lambda s)^{n-2}}{(n-2)!} d s \\
& =\frac{\lambda e^{-\lambda t}(\lambda t)^{n-1}}{(n-1)!}
\end{aligned}
$$

Properties of Exponential Distribution

Assume that X_{1} and X_{2} are exponential with λ_{1} and λ_{2}. The probability that $X_{1}<X_{2}$ can be computed by conditioning on X_{1} as

$$
\begin{aligned}
P\left\{X_{1}<X_{2}\right\} & =\int_{0}^{\infty} P\left\{X_{1}<X_{2} \mid X_{1}=x\right\} \lambda_{1} e^{-\lambda_{1} x} d x \\
& =\int_{0}^{\infty} P\left\{x<X_{2}\right\} \lambda_{1} e^{-\lambda_{1} x} d x \\
& =\int_{0}^{\infty} e^{-\lambda_{2} x} \lambda_{1} e^{-\lambda_{1} x} d x \\
& =\int_{0}^{\infty} \lambda_{1} e^{-\left(\lambda_{1}+\lambda_{2}\right) x} d x \\
& =\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
\end{aligned}
$$

Counting Process

A stochastic process $\{N(t), t \geq 0\}$ is said to be a counting process if $N(t)$ represents the the total number of "events" that occur by time t. A counting process $N(t)$ must satisfy

- $N(t) \geq 0$.
- $N(t)$ is integer valued.
- If $s<t$, then, $N(s) \leq N(t)$.
- For $s<t, N(t)-N(s)$ equals the number of events occur in the interval $(s, t]$.

Counting Process

A stochastic process $\{N(t), t \geq 0\}$ is a counting process if $N(t)$ represents

- the number of persons who enter a store at or prior to time t (event: a person entering the store)
- the number of people who were born by time t (event: born of a child)

Counting Process

- A counting process is said to posses independent increments if the number of events that occur in disjoint time intervals are independent.
- A counting process is said to posses stationary increments if the distribution of the number of events that occur in any interval of time depends only on the length of the interval.

Poisson Process

Definition

The counting process $\{N(t), t \geq 0\}$ is said to be a Poisson process with rate $\lambda, \lambda>0$, if
(i) $N(0)=0$.
(ii) The process has independent increments.
(iii) The number of events in any interval of length t is Poisson distributed with mean λt. That is, for all $s, t \geq 0$,

$$
P\{N(t+s)-N(s)=n\}=\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}, \quad n=0,1, \ldots
$$

Poisson Process

Definition

The function $f(\bullet)$ is said to be $o(h)$ if

$$
\lim _{h \rightarrow 0} \frac{f(h)}{h}=0
$$

Poisson Process

The function $f(x)=x^{2}$ is $o(h)$ since

$$
\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} \frac{h^{2}}{h}=0
$$

The function $f(x)=x$ is not $o(h)$ since

$$
\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1
$$

Poisson Process

Alternative Definition

The counting process $\{N(t), t \geq 0\}$ is said to be a Poisson process with rate $\lambda, \lambda>0$, if
(i) $N(0)=0$.
(ii) The process has independent increments.
(iii) $P\{N(h)=1\}=\lambda h+o(h)$
(iv) $P\{N(h) \geq 2\}=o(h)$

Inter-Arrival and Waiting Time Distributions

Let T_{n} be the time between the $n-1$ st and and the nth event. To define the distribution of $\left\{T_{n}, n=1,2, \ldots\right\}$, note that

$$
\begin{aligned}
T_{1}>t \Leftrightarrow N(t)=0 \Rightarrow P\left\{T_{1}>t\right\} & =P\{N(t)=0\} \\
& =e^{-\lambda t} \Rightarrow T_{1} \sim \text { exponential }(\lambda)
\end{aligned}
$$

Inter-Arrival and Waiting Time Distributions

Also note that

$$
P\left\{T_{2}>t\right\}=E\left(P\left\{T_{2}>t \mid T_{1}\right\}\right)
$$

and

$$
\begin{aligned}
P\left\{T_{2}>t \mid T_{1}=s\right\} & =P\left\{0 \text { events in }(s, s+t] \mid T_{1}=s\right\} \\
& =P\{0 \text { events in }(s, s+t]\} \\
& =e^{-\lambda t} \Rightarrow T_{2} \sim \text { exponential }(\lambda)
\end{aligned}
$$

by independence and stationary increments.

Inter-Arrival and Waiting Time Distributions

Hence, we conclude that T_{2} is also an exponential RV with rate λ and that T_{2} is independent of T_{1}. Repeating the same argument yields the following:

Proposition
$T_{n}, n=1,2, \ldots$ are IID exponential RV s with rate λ.

Inter-Arrival and Waiting Time Distributions

S_{n}, the arrival time of the nth event, defined as

$$
S_{n}=\sum_{i=1}^{n} T_{i}, \quad n \geq 1
$$

We can show that $S_{n} \sim$ gamma (n, λ).

Inter-Arrival and Waiting Time Distributions

The counting process $\{N(t), t \geq 0\}$ is said to be non-homogenous
Poisson process with intensity function $\lambda(t), t \geq 0$, if

- $N(t)=0$
- $\{N(t), t \geq 0\}$ has independent increments
- $P\{N(t+h)-N(t) \geq 2\}=o(h)$
- $P\{N(t+h)-N(t)=1\}=\lambda(t) h+o(h)$

Inter-Arrival and Waiting Time Distributions

Consider a hot dog stand that opens at 8 A.M. From 8 until 11 A.M. customers arrive, on the average, at a steadily increasing rate that starts with an initial rate of 5 customers per hour at 8 A.M. and reaches a maximum of 20 customers per hour at 11 A.M.
From 11 A.M. until 1 P.M. the (average) rate remains constant at 20 customers per hour, and then, drops steadily from 1 P.M. until closing time at 5 P.M. at which time it has the value of 12 customers per hour. If we assume that the numbers of customers arriving during disjoint time periods are independent, then, what is the probability that no customers arrive between 8:30 A.M. and 9:30 A.M. on Monday morning? What is the expected number of arrivals in this period?

Inter-Arrival and Waiting Time Distributions

By assuming a non-homogenous Poisson process with intensity function $\lambda(t)$ defined as

$$
\lambda(t)=\left\{\begin{array}{cc}
5+5 t, & 0 \leq t \leq 3 \\
20, & 3 \leq t \leq 5 \\
20-2(t-5), & 5 \leq t \leq 9
\end{array}\right.
$$

and

$$
\lambda(t)=\lambda(t-9), \quad t>9
$$

Inter-Arrival and Waiting Time Distributions

We can also write it as

$$
\lambda(t)=\left\{\begin{array}{cc}
0, & 0 \leq t \leq 8 \\
5+5(t-8), & 8 \leq t \leq 11 \\
20, & 11 \leq t \leq 13 \\
20-2(t-13), & 13 \leq t \leq 17 \\
0, & 17 \leq t \leq 24
\end{array}\right.
$$

and

$$
\lambda(t)=\lambda(t-24), \quad t>24
$$

Inter-Arrival and Waiting Time Distributions

As the number of arrivals between 8.30 A.M. and 9.30 A.M. will be Poisson with mean $m(3 / 2)-m(1 / 2)$ in the first representation. We then have the probability that this number is zero is

$$
\exp \left\{-\int_{1 / 2}^{3 / 2}(5+5 t) d t\right\}=e^{-10}
$$

and the mean number of arrivals is

$$
\int_{1 / 2}^{3 / 2}(5+5 t) d t=10
$$

Thanks! Questions?

