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Introduction

I Consider a stochastic process {Xn, n = 1, 2, . . .} that takes on
a finite number or countable number of possible values.

I Unless otherwise mentioned, the set of possible values are
denoted by non-negative integers.

I If Xn = i , then, the process is said to be in state i at time n.

I Whenever the process is in state i , there is a fixed probability
Pij that it will next be in state j .

Introduction

We can then write Pij as

Pij = P{Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0}

for all states i0, i1, . . . , in−1, i , j and n ≥ 0. Such a stochastic
process is known as a Markov chain.
In other words, for a Markov chain, the conditional distribution of
any future state Xn+1 given the present state Xn and the past
states Xn−1,Xn−2, . . . ,X0, is independent of the past states and
depends only on the present state.



Introduction

The value Pij is the probability that, when in state i , the process
will enter state j . We have that

Pij ≥ 0, i , j ≥ 0

and

∞∑

j=0

Pij = 1, i = 0, 1, . . .

Introduction

We let P denote the matrix of one-step transition probabilities.

P =

∣∣∣∣∣∣∣∣∣∣∣∣

P00 P01 P02 . . .
P10 P11 P12 . . .

...
...

...
Pi0 Pi1 Pi2 . . .

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣



Example 4.1

Suppose that the chance of rain tomorrow only depends on the
weather conditions today, and also suppose that if it rains today, it
will rain tomorrow with probability α and if it does not rain today,
it will rain tomorrow with probability β. The TPM is then given by

P =

∣∣∣∣
α 1− α
β 1− β

∣∣∣∣

Example 4.3

On any given day Gary is either cheerful (C), so-so (S), or glum
(G). If he is cheerful today, then he will be C, S, or G tomorrow
with respective probabilities 0.5, 0.4, 0.1. If he is feeling so-so
today, then he will be C, S, or G tomorrow with probabilities 0.3,
0.4, 0.3. If he is glum today, then he will be C, S, or G tomorrow
with probabilities 0.2, 0.3, 0.5.



Example 4.3

Letting Xn be the mood of Gary on day n, {Xn, n ≥ 0} is a 3-state
MC with TPM

P =

∣∣∣∣∣∣

.5 .4 .1

.3 .4 .3

.2 .3 .5

∣∣∣∣∣∣

Example 4.4
Transforming a Process into an MC

Suppose that whether or not it rains today depends on previous
weather conditions through the last two days. Specifically, suppose
that if it has rained for the past two days, then it will rain
tomorrow with probability 0.7; if it rained today but not yesterday,
then it will rain tomorrow with probability 0.5; if it rained
yesterday but not today, then it will rain tomorrow with probability
0.4; if it has not rained in the past two days, then it will rain
tomorrow with probability 0.2.



Example 4.4
Transforming a Process into an MC

By defining our states as follows, we can express the problem as an
MC:

I state 0: If it rained both today and yesterday

I state 1: If it rained today, but not yesterday

I state 2: If it rained yesterday, but not today

I state 3: If it did not rain today and yesterday

Example 4.4
Transforming a Process into an MC

We have an MC with the following TPM:

P =

∣∣∣∣∣∣∣∣

.7 .0 .3 .0

.5 .0 .5 .0

.0 .4 .0 .6

.0 .2 .0 .8

∣∣∣∣∣∣∣∣



Chapman-Kolmogorov Equations

Pij are the 1-step transition probabilities. We define the n-step
transition probabilities,

Pn
ij = P{Xn+k = j |Xk = i}, i , j , n ≥ 0

The Chapman-Kolmogorov equations provide a method for
computing n-step probabilities.

Pn+m
ij =

∞∑

k=0

Pn
ikP

m
kj , i , j , n,m ≥ 0

Chapman-Kolmogorov Equations

If we let P(n) be the n-step TPM of Pn
ij , then, we can write

P(n+m) = P(n) × P(m)

and thus, we have

P(2) = P(1+1) = P× P = P2

and by induction

P(n) = P(n−1+1) = P(n−1) × P = Pn



Example 4.8

Consider the TPM for Example 4.1, and by letting α = 0.7 and
β = 0.4, and compute the probability that it will rain 4 days from
today given that it is raining today.

P =

∣∣∣∣
α 1− α
β 1− β

∣∣∣∣⇒ P =

∣∣∣∣
.7 .3
.4 .6

∣∣∣∣⇒ P2 =

∣∣∣∣
.61 .39
.52 .48

∣∣∣∣

We then have

P(4) = P(2) × P(2) =

∣∣∣∣
.5749 .4251
.5668 .4332

∣∣∣∣

Example 4.9

Consider Example 4.4. Given that it rained on Monday and
Tuesday, what is the probability that it will rain on Thursday?

P =

∣∣∣∣∣∣∣∣

.7 .0 .3 .0

.5 .0 .5 .0

.0 .4 .0 .6

.0 .2 .0 .8

∣∣∣∣∣∣∣∣
⇒ P2 =

∣∣∣∣∣∣∣∣

.49 .12 .21 .18

.35 .20 .15 .30

.20 .12 .20 .48

.10 .16 .10 .64

∣∣∣∣∣∣∣∣

The desired probability is thus P2
00 + P2

01 = 0.61.



Example 4.10

A pensioner receives 2 (x 1,000 dollars) at the beginning of each
month. The amount of money he needs to spend during a month
is independent of the amount he has and is equal to i with
probability Pi , i = 1, 2, 3, 4, and

∑
i Pi = 1. If he has more than 3

at the end of a month, he gives the amount greater than 3 to his
son. If, after receiving his payment at the beginning of a month,
he has a capital of 5, what is the probability that his capital is ever
1 or less at any time within the following 4 monhts?

Example 4.10

We let the states of the MC the amount he has at the end of each
month. We then need to consider the states 1, 2 and 3, only.
Why? The TPM, let it be Q, is given by

Q =

∣∣∣∣∣∣

1 0 0
P3 + P4 P2 P1

P4 P3 P1 + P2

∣∣∣∣∣∣
Pi=.25−→ Q4 =

∣∣∣∣∣∣

1 0 0
222
256

13
256

21
256

201
256

21
256

34
256

∣∣∣∣∣∣

The desired probability is Q4
3,1 = 201/256.



Classification of States

I State j is accessible from state i if Pn
ij > 0 for some n ≥ 0,

i.e., i ← j .

I 2 states i and j that are accessible to each other are said to
communicate, i.e., i ↔ j .

I State i communicates with state i , for all i ≥ 0.

I If state i communicates with state j , then, state j
communicates with state i .

I If state i communicates with state j , and state j
communicates with state k, then, state i communicates with
state k.

Classification of States

I 2 states that communicate with each other are said to be in
the same class.

I As a consequence of the communication properties, any
classes of states are either identical or disjoint.

I In other words, the concept of communication devides the
state space up into a number of seperate classes.

I The MC is said to be irreducible if there is only 1 class, that
is, if all states communicate with each other.



Example 4.11

Find the classes of the following MC.

P =

∣∣∣∣∣∣

1
2

1
2 0

1
2

1
4

1
4

0 1
3

2
3

∣∣∣∣∣∣

We see that the MC is irreducible.

Example 4.12

Find the classes of the following MC.

P =

∣∣∣∣∣∣∣∣

1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 0 0 1

∣∣∣∣∣∣∣∣

The classes of the MC are {0, 1}, {2} and {3}.



Classification of States

For any state i , we let fi be the probability that, starting in state i ,
the process will ever reenter state i . We say,

I state i is recurrent if fi = 1,

I state i is transient if fi < 1.

Classification of States

We also say that

I If state i is recurrent, then, starting in state i , the MC will
reenter state i infinitely often.

I If state i is transient, then, starting in state i , the number of
time periods that the MC will be in state i is has a geometric
distribution with mean 1/(1− fi ).

I Hence, if state i is recurrent iif, starting in state i , the
expected number of time periods that the MC is in state i is
infinite.



Classification of States

For the number of periods that the MC is in state i , we can write

In =

{
1, Xn = i
0, Xn 6= i

⇒ E

( ∞∑

n=0

In|X0 = i

)
=
∞∑

n=0

E (In|X0 = i)

=
∞∑

n=0

P{Xn = i |X0 = i}

=
∞∑

n=0

Pn
ii

Classification of States

We have thus proven the following:

Proposition

State i is recurrent if ∞∑

n=1

Pn
ii =∞

State i is trainsient if ∞∑

n=1

Pn
ii <∞



Classification of States

Corollary

If state i is recurrent, and if state i communicates with state j ,
then, state j is recurrent.

Example

Find the recurrent and transient states for the following MC:

P =

∣∣∣∣∣∣∣∣

0 0 1
2

1
2

1 0 0 0
0 1 0 0
0 1 0 0

∣∣∣∣∣∣∣∣

Since all states communicate, and since this is a finite MC, all
states must be recurrent.



Example

Find the recurrent and transient states for the following MC:

P =

∣∣∣∣∣∣∣∣∣∣

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2

1
2 0

0 0 1
2

1
2 0

1
4

1
4 0 0 1

2

∣∣∣∣∣∣∣∣∣∣

Limiting Probabilities

In Example 4.8, we have

P =

∣∣∣∣
.7 .3
.4 .6

∣∣∣∣⇒ P2 =

∣∣∣∣
.61 .39
.52 .48

∣∣∣∣⇒ P(4) =

∣∣∣∣
.5749 .4251
.5668 .4332

∣∣∣∣

If we continue, we obtain the following matrix. What do you note
about it?

P(8) = P(2) × P(2) =

∣∣∣∣
.572 .428
.570 .430

∣∣∣∣



Limiting Probabilities

I State i is said to have a period of d if Pn
ii = 0 whenever n is

not divisible by d , and d is the largest integer with this
property.

I A state with period 1 is said to be aperiodic.
I It can be shown that periodicity is a class property.

I If state i is recurrent, then, it is said to be positive recurrent
if, starting in i , the expected time until the MC returns to
state i is finite.

I It can be shown that positive recurrence is a class property.
I While there exist recurrent states that are not positive

recurrent, it can be shown that in a finite-state MC all
recurrent states are positive recurrent.

I Positive recurrent, aperiodic states are called ergodic.

Limiting Probabilities

Theorem
For an irreducible ergodic MC,

lim
n→∞

Pn
ij

exists and is independent of i . Furthermore, if we let

πj = lim
n→∞

Pn
ij , j ≥ n

then, πj is the unique solution of

πj =
∞∑

i=0

πiPij , j ≥ 0 and
∞∑

j=0

πj = 1



Example

The limiting probabilities of the following MC:

P =

∣∣∣∣
α 1− α
β 1− β

∣∣∣∣

π0 = απ0 + βπ1

π1 = (1− α)π0 + (1− β)π1

π0 + π1 = 1

π0 =
β

1 + β − α and π1 =
1− α

1 + β − α

Example

The limiting probabilities of the following MC:

P =

∣∣∣∣∣∣

.5 .4 .1

.3 .4 .3

.2 .3 .5

∣∣∣∣∣∣

π0 = .5π0 + .3π1 + .2π2

π1 = .4π0 + .4π1 + .3π2

π2 = .1π0 + .3π1 + .5π2

π0 + π1 + π2 = 1

π0 =
21

62
, π1 =

23

62
and π2 =

18

62



Example

Suppose that a production process changes states in accordance
with an irreducible, positive recurrent MC with TPs Pij ,
i , j = 1, ..., n, and suppose that certain of the states are considered
acceptable and the remaining unacceptable. Let A denote the
acceptable states and Ac the unacceptable ones. If the production
process is said to be “up” when in an acceptable state and “down”
when in an unacceptable state, determine

I the rate at which the production process goes from up to
down (that is, the rate of breakdowns);

I the average length of time the process remains down when it
goes down;

I the average length of time the process remains up when it
goes up.

Example

Let πk , k = 1, . . . , n be the long-run proportions. For i ∈ A and
j ∈ Ac , the rate at which the MC enters j from i is

πiPij

and so the rate at which the production process j from an
unacceptable state is

∑

i∈A
πiPij

and hence, the rate at which breakdown occurs is

∑

j∈Ac

∑

i∈A
πiPij



Example

If we let Ū and D̄ be the time that the MC remains up and down
when it goes up and down, respectively. Since there singe
breakdown every Ū + D̄ time units on the average, it follows that
the rate at which breakdown occurs is

1

Ū + D̄

and then,

1

Ū + D̄
=
∑

j∈Ac

∑

i∈A
πiPij

Example

Now, consider the proportion of time the MC is up which is

Ū

Ū + D̄
=
∑

i inA

πi

and hence,

Ū =

∑
i∈A πi∑

j∈Ac

∑
i∈A πiPij

and

D̄ =
1−∑i∈A πi∑
j∈Ac

∑
i∈A πiPij

=

∑
i∈Ac πi∑

j∈Ac

∑
i∈A πiPij



Example

For example, if we have 1 and 2 are up and 3 and 4 are down states

P =

∣∣∣∣∣∣∣∣

.25 .25 .50 .00

.00 .25 .50 .25

.25 .25 .25 .25

.25 .25 .00 .50

∣∣∣∣∣∣∣∣

π1 = .25π1 + .25π2 + .50π3

π2 = .25π1 + .25π2 + .25π3 + .25π4

π3 = .50π1 + .50π2 + .25π3

π1 + π2 + π3 + π4 = 1

Example

By solving the equations,

π1 =
3

16
, π2 =

1

4
, π3 =

14

48
and π4 =

13

48

we have the rate of breakdowns as

π1(P13 + P14) + π2(P23 + P24) =
9

32

Hence,

Ū =
14

9
and D̄ = 2



Some Applications

I The Gambler’s Ruin Problem

I A Model for Algorithmic Efficiency

I Using a Random Walk to Analyze a Probabilistic Algorithm

The Gambler’s Ruin Problem

Consider a gambler who at each play of the game has probability p
of winning one unit and probability q = 1− p of losing one unit.
Assume that each play is independent. What is the probability
that, starting with i units, the gambler will reach N units before
reaching zero units?



The Gambler’s Ruin Problem

Let Xn denote the player’s fortune at time n, then, the process
{Xn, n = 0, 1, . . .} is an MC with transition probabilities

P00 = PNN = 1

Pi ,i+1 = p = 1− Pi ,i−1, i = 1, . . . ,N − 1

This MC has 3 classes as {0}, {1, 2, . . . ,N − 1}, and {N}, the
second one is transient whereas the others are recurrent.

The Gambler’s Ruin Problem

Let Pi , i = 0, . . . ,N, denote the probability that, starting with i ,
the gambler’s fortune will eventually reach N. By conditioning on
the outcome of the first play, we have

Pi = pPi+1 + qPi−1
pPi + qPi = pPi+1 + qPi−1

and thus,

Pi+1 − Pi =
q

p
(Pi − Pi−1)

for i = 1, . . . ,N − 1.



The Gambler’s Ruin Problem

Since P0 = 0, we have that

Pi+1 − Pi =
q

p
(Pi − Pi−1)⇒ P2 − P1 =

q

p
(P1 − P0) =

(
q

p

)
P1

P3 − P2 =
q

p
(P2 − P1) =

(
q

p

)2

P1

and thus,

Pi − Pi−1 =
q

p
(Pi−1 − Pi−2) =

(
q

p

)i−1
P1

and

PN − PN−1 =
q

p
(PN−1 − PN−2) =

(
q

p

)N−1
P1

The Gambler’s Ruin Problem

Adding the first i − 1 equations, we get

Pi − P1 = P1

[(
q

p

)
+

(
q

p

)2

+ . . .+

(
q

p

)i−1]

or

Pi =

{
1−(q/p)i
1−(q/p) , if q

p 6= 1

iPi , if q
p = 1

Since PN = 1, we get

P1 =

{
1−(q/p)
1−(q/p)N , if p 6= 1

2
1
N , if p = 1

2

⇒ Pi =

{
1−(q/p)i
1−(q/p)N , if p 6= 1

2
i
N , if p = 1

2



The Gambler’s Ruin Problem

Note that, as N →∞, we have

Pi =

{
1−

(
q
p

)i
, if p > 1

2

0, if p ≤ 1
2

As a result, we conclude that if p > .5, we have a positive
probability that the gambler’s fortune will increase indefinitely
whereas otherwise he will lose all of his money.

The Gambler’s Ruin Problem
Example

SupposeMax and Patty decide to flip pennies; the one coming
closest to the wall wins. Patty, being the better player, has a
probability 0.6 of winning on each flip. (a) If Patty starts with 5
pennies and Max with 10, what is the probability that Patty will
wipe Max out? (b) What if Patty starts with 10 and Max with 20?

We have, i = 5, N = 15 and p = .6, the desired probability for
part (a) is then given by

Pi =
1− (q/p)i

1− (q/p)N
=

1− (2/3)5

1− (2/3)15
≈ 0.87

and for part (b),

Pi =
1− (q/p)i

1− (q/p)N
=

1− (2/3)10

1− (2/3)30
≈ 0.98



A Model for Algorithmic Efficiency

Consider the following LP:

min cx : Ax ≤ b, x ≥ 0

where c is a 1× n row vector, x is a n × 1 column vector, A is an
m × n matrix and b is a is a n × 1 column vector.
We thus have an LP with n variables and m constraints. For such
an LP, assuming that n > m, we can find a BFS and the optimal
solution x by setting n −m terms equal to 0 corresponding to the
extreme points of the feasible space.

A Model for Algorithmic Efficiency

The famous simplex algorithm solves the LP by moving along the
extreme points of the feasible space, and thus, we can have N such
extreme points for an LP with n variables and m constraints as

N =

(
n

m

)

What do you think about the performance of the simplex
algorithm?



A Model for Algorithmic Efficiency

To analyze the performance of the simplex algorithm, consider an
MC model to show how the algorithm moves along the extreme
points.

I Assume that, if at any time, the algorithm is at the jth best
extreme point, then, after the next pivot, the next extreme
point will be equally likely to be any of the j − 1 best points.

I We can then show that the time from the Nth best to the
best extreme point has approximately, for large N, a normal
distribution with mean and variance equal to the natural
logarithm of N.

A Model for Algorithmic Efficiency

Consider an MC for which P11 = 1 and

Pij =
1

i − 1
, j = 1, . . . , i − 1, i > 1

and if we let Ti be the time (number of iterations) to go from
state i to state 1, we can write

E (Ti ) = 1 +
1

i − 1




i−1∑

j=1

E (Tj)




Starting with E (T1) = 0, we can write by induction that

E (Ti ) =
i−1∑

j=1

1

j



A Model for Algorithmic Efficiency

To obtain a more complete description, we can write

TN =
N−1∑

j=1

Ij

where

Ij =

{
1, if the process ever enter j
0, otherwise

A Model for Algorithmic Efficiency

We can then write the followings.

Proposition

I1, . . . , IN−1 are independent and

PIj=1 =
1

j
, 1 ≤ j ≤ N − 1

Corollary

E (TN) =
N−1∑

j=1

1

j
and Var(TN) =

N−1∑

j=1

1

j

(
1− 1

j

)

and for N large, TN has approximately normal with mean and
variance logN.



A Model for Algorithmic Efficiency

In a simplex implementation, for n and m large, we have, by
Stirling’s approximation, that

N =

(
n

m

)
≈ nn+1/2

(n −m)n−m+1/2mm+1/2
√

2π

and letting c = n/m,

logN ≈
(
mc +

1

2

)
log (mc) +

[
m(c − 1) +

1

2
log [m(c − 1)]

]

−
(
m +

1

2

)
logm − 1

2
log (2π)

A Model for Algorithmic Efficiency

We then write

logN ≈
(
mc +

1

2

)
log (mc) +

[
m(c − 1) +

1

2
log [m(c − 1)]

]

−
(
m +

1

2

)
logm − 1

2
log (2π)

≈ m

[
c log

c

c − 1
+ log (c − 1)

]

and when c is large

lim
x→∞

logN ≈ m[1 + log (c − 1)]

For instance, for n = 8, 000 and m = 1, 000, the number of
transitions would be 3, 000± 2

√
3000 = 3, 000± 110

approximately, 95% of the time.



Mean Time in Transient States

For a finite-state MC, let T = {1, 2, . . . , t} be the set of transient
states, and

PT =




P11 P12 . . . P1t
...

... · · · ...
Pt1 Pt2 . . . Ptt




For transient states i and j , let sij denote the expected number of
time periods that the MC is in j given that it started in i , and let
δij = 1 when i = j and let it be 0 otherwise. We then write

sij = δij +
∑

k

Pikskj = δij +
t∑

k

Pikskj

Mean Time in Transient States

If we let

S =




s11 s12 . . . s1t
...

... · · · ...
st1 st2 . . . stt




we can then write

(I− PT )S = I⇒ S = (I− PT )−1



Example

In the gambler’s ruin problem with p = .4 and N = 7, find the
expected amount of time that the gambler has 5 units given that
he started with 3 units.

PT =




.0 .4 .0 .0 .0 .0

.6 .0 .4 .0 .0 .0

.0 .6 .0 .4 .0 .0

.0 .4 .6 .0 .4 .0

.0 .4 .0 .6 .0 .4

.0 .4 .0 .0 .6 .0




Example

In the gambler’s ruin problem with p = .4 and N = 7, find the
expected amount of time that the gambler has 5 units given that
he started with 3 units.

S = (I− PT )−1 =




1.61 1.02 0.63 0.37 0.19 0.08
1.54 2.56 1.58 0.92 0.49 0.19
1.42 2.37 3.00 1.75 0.92 0.37
1.25 2.08 2.63 3.00 1.58 0.63
0.98 1.64 2.08 2.37 2.56 1.02
0.59 0.98 1.25 1.42 1.54 1.61




We then have s35 = 0.92.



Branching Process

I Consider a population consisting of individuals able to produce
offspring of the same kind.

I Assume that each individual will have produced j new
offspring with probability Pj , j ≥ 0, independently of the
numbers produced by the others.

I Xn is the size of the nth generation.

I It follows that {Xn, n ≥ 0} is an MC with its state space as
the set of non-negative integers.

Branching Process

I Note that state 0 is a recurrent state.

I Also note that if P0 > 0, all other states are transient.

I We can hence conclude that, if P0 > 0, then, the population
will either die out or its size will converge to infinity.



Branching Process

We define the mean and variance of the number of offspring of a
single individual as follows:

µ =
∞∑

j

jPj and σ2 =
∞∑

j=0

(j − µ)2Pj

We define Xn as above where Zi represents the number of offspring
of the ith individual of the (n − 1)st generation.

Xn =

Xn−1∑

i=1

Zi

Branching Process

By conditioning on the number of individuals on the previous
generation, we finally conclude that

π0 =
∞∑

j=0

πj0Pj

where we can show that when µ > 1, π0 satisfies the above
expression, and when µ ≥ 1, π0 = 1.



Example

If P0 = 1/2, P1 = 1/4 and P2 = 1/4, what is π0?
Since µ = 3/4, we have that π0 = 1.

If P0 = 1/4, P1 = 1/4 and P2 = 1/2, what is π0?
We have

π0 =
1

4
+

1

4
π0 +

1

2
π20 ⇒ π0 =

1

2

Time Reversible MCs

Consider a stationary ergodic MC with TPs Pij and stationary
probabilities πi . Suppose that starting at some time we trace the
sequence of states going backward in time. It turns out that this
sequence is iteself an MC with TPs

Qij = P{Xm = j |Xm+1 = i}

=
P{Xm = j ,Xm+1 = i}

P{Xm+1 = i}

=
P{Xm = j}P{Xm+1 = i |Xm = j}

P{Xm+1 = i}

=
πjPji

πi



Time Reversible MCs

If, for the reversed process which is also an MC with TPS,

Qij =
πjPji

πi

we have,

Qij = Pij ⇒ πiPij = πjPji

then, the MC is said to be time reversible.

MC Monte Carlo Methods

Let X be discrete random vector, and let the PMF of it be given
by P{X = xj}, j ≥ 1, and assume that we want to find, for some
function h,

θ = E [h(X)] =
∞∑

j=1

h(xj)P{X = xj}

If it is computationally difficult to evaluate the function, we often
use simulation to approximate θ, which is mostly the Monte Carlo
simulation.



Markov Decision Process

I Consider a process that is observed at discrete time points to
be in any of the M possible states. After observing the state
of the process, an action must be chosen where we let A be
the set of all possible actions.

I If the process is in state i at time n and action a is chosen,
then, the next state of the system is determined according to
the transition probabilities Pij(a).

I The TPs are functions of only of the present states and the
subsequent actions.

P{Xn+1 = j |X0, a0,X1, a1, . . . ,Xn = i , an = a} = Pij(a)

Hidden MCs

For an MC with TPs, Pij and initial state probabilities
pi = P{X1 = i}, i ≥ 0, suppose that there is a finite set of signals,
and that a signal from the set is emitted each time the MC enters
a state. If Sn is the nth signal emitted, then,

P{S1 = s|X1 = j} = p(s|j)
P{Sn = s|X1, S1, . . . ,Xn = j} = p(s|j)

Such a model is called a hidden MC model.



Thanks. Questions?


