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Conditional Probability and Conditional Expectation

One of the most useful concepts in probability theory is that of
conditional probability and conditional expectation since

I in practice, we are often interested in calculating probabilities
and expectations when some partial information is available;
hence, the desired probabilities and expectations are
conditional ones;

I in calculating a desired probability or expectation it is often
extremely useful to first “condition” on some appropriate
random variable.

Conditional PMF

If X and Y are discrete RVs, the conditional PMF of X given that
Y = y is

pX |Y (x |y) = P{X = x |Y = y}

=
P{X = x ,Y = y}

P{Y = y}

=
p(x , y)

pY (y)

for P{Y = y} > 0.



Conditional CDF

If X and Y are discrete RVs, the conditional CDF of X given that
Y = y is

FX |Y (x |y) = P{X ≤ x |Y = y}
=
∑

a≤x
pX |Y (a|y)

Conditional Expectation

If X and Y are discrete RVs, the conditional expectation of X
given that Y = y is

E (X |Y = y) =
∑

x

xP{X = x |Y = y}

=
∑

x

xpX |Y (x |y)



Example

If X1 and X2 are independent binomial RVs with parameters (n1, p)
and (n2, p), respectively, what is the PMF of X1 given that
X1 + X2 = m?

P{X1 = k|X1 + X2 = m} =
P{X1 = k,X1 + X2 = m}

P{X1 + X2 = m}

=
P{X1 = k,X2 = m − k}

P{X1 + X2 = m}

=
P{X1 = k}P{X2 = m − k}

P{X1 + X2 = m}

=

(n1
k

)
pkqn1−k

( n2
m−k

)
pm−kqn2−m+k

(n1+n2
m

)
pmqn1+n2−m

=

(n1
k

)( n2
m−k

)
(n1+n2

m

)

Example

If X1 and X2 are independent binomial RVs with parameters (n1, p)
and (n2, p), respectively, what is the PMF of X1 given that
X1 + X2 = m?

P{X1 = k |X1 + X2 = m} =

(n1
k

)( n2
m−k

)
(n1+n2

m

)

The distribution of X1 is known as the hyper-geometric
distribution.
It can be defined as the distribution of the number of blue balls
when a sample of m balls is randomly chosen from an urn that
contains n1 blue and n2 red balls.



Hyper-Geometric Distribution

I X : number of successes

I n: number of draws (without replacement)

I N: total number of items in the population

I K : total number of successes in the population

X follows a hyper-geometric distribution if its PDF is defined as

P{X = k} =

(K
k

)(N−K
n−k

)
(N
n

)

In other words, X can be defined as the number of successes when
a sample of n items is randomly chosen from population that
contains N items of which k are successes.

Example

If X and Y are independent Poisson RVs with respective means λ1
and λ2, what is the conditional expectation of X given that
X + Y = n?

P{X = k |X + Y = n} =
P{X = k,X + Y = n}

P{X + Y = n}

=
P{X = k,Y = n − k}

P{X + Y = n}

=
P{X = k}P{Y = n − k}

P{X + Y = n}



Example

If X and Y are independent Poisson RVs with respective means λ1
and λ2, what is the conditional expectation of X given that
X + Y = n?

P{X = k |X + Y = n} =
P{X = k}P{Y = n − k}

P{X + Y = n}

=
e−λ1λk1

k!

e−λ2λn−k2

(n − k)!

[
e−(λ1+λ2)(λ1 + λ2)n

n!

]−1

=
n!

(n − k)!k!

λk1λ
n−k
2

(λ1 + λ2)n

=

(
n

k

)(
λ1

λ1 + λ2

)k ( λ2
λ1 + λ2

)n−k

Example

In other words, the conditional distribution of Poisson RV X given
that X + Y = n, is the binomial distribution with parameters n
and λ1/(λ1 + λ2). We can then write

E (X |X + Y = n) =
nλ1

λ1 + λ2



Conditional PDF

If X and Y are continuous RVs, the conditional PMF of X given
that Y = y is

fX |Y (x |y) =
f (x , y)

fY (y)

for fY (y) > 0.

Conditional CDF

If X and Y are continuous RVs, the conditional CDF of X given
that Y = y is

FX |Y (x |y) = P{X ≤ x |Y = y}

=

∫

a≤x
fX |Y (a|y)da



Conditional Expectation

If X and Y are continuous RVs, the conditional expectation of X
given that Y = y is

E (X |Y = y) =

∫ +∞

−∞
xfX |Y (x |y)dx

Example

Suppose that the joint PDF of X and Y is given by

f (x , y) =

{
6xy(2− x − y), 0 < x < 1, 0 < y < 1

0, otherwise

Compute the conditional expectation of X given that Y = y ,
where 0 < y < 1.



Example

First compute the conditional density.

fX |Y (x |y) =
f (x , y)

fY (y)

=
6xy(2− x − y)∫ 1

0 6xy(2− x − y)dx

=
6xy(2− x − y)

y(4− 3y)

Example

Now compute the conditional expectation.

E (X |Y = y) =

∫ 1

0

6x2(2− x − y)dx

4− 3y

=
2(2− y)

4− 3y

=
5− 4y

8− 6y



Example

Suppose that the joint PDF of X and Y is given by

f (x , y) =

{
4y(x − y)e−(x+y), 0 < x <∞, 0 < y < x

0, otherwise

Compute the conditional expectation of X given that Y = y .

Example

First compute the conditional density.

fX |Y (x |y) =
f (x , y)

fY (y)

=
4y(x − y)e−(x+y)

∫∞
y 4y(x − y)e−(x+y)dx

, x > y

=
(x − y)e−x∫∞

y (x − y)e−xdx
, let w = x − y

=
(x − y)e−x∫∞

y we−(y+w)dw
, x > y

= (x − y)e−(x−y), x > y



Example 3.7

Now compute the conditional expectation.

E (X |Y = y) =

∫ ∞

y
x(x − y)e−(x−y)dx

=

∫ ∞

0
(w + y)we−wdw

= E (W 2) + yE (W )

= 2 + y

Computing Expectations by Conditioning

Using

E (X ) = E [E (X |Y )]

we can write

E (X ) =
∑

y

E (X |Y = y)P{Y = y}

for discrete RVs and

E (X ) =

∫ +∞

−∞
E (X |Y )fY (y)dy

for continuous RVs.



Example

Suppose that the expected number of accidents per week is 4, and
also suppose that the number of people who are injured in each
accident are IID RVs with a mean of 2. If we assume that the
number of accidents is independent of the number of injured
people, what is the expected number of injuries during a week?

Let N be the number of accidents during a week and Xi the
number of injured people due to the ith accident. We can then
write the total number of injuries as

∑N
i Xi .

Example

E

(
N∑

i

Xi

)
= E

[
E

(
N∑

i

Xi |N
)]

= E

[
E

(
N∑

i=1

Xi |N = n

)]

= E

[
E

(
N∑

i=1

Xi

)]

= E [NE (X )]

= E (N)E (X )

The expected number of accidents is then 8.



Example: The Mean of a Geometric RV

Let N be the number of trials required and Y be defined as

Y =

{
1, if first trial is a success
0, otherwise

We can then write

E (N) = E (N|Y = 1)P{Y = 1}+ E (N|Y = 0)P{Y = 0}
= (1)P{Y = 1}+ [1 + E (N)]P{Y = 0}
= p + (1− p)[1 + E (N)]

We then have

E (N) =
1

p

Example

A miner is trapped in a mine containing 3 doors. The first door
leads to a tunnel that takes him to safety after 2 hours of travel.
The second and third doors lead to tunnels that return him to the
mine after 3 hours and 5 hours, respectively. If he randomly
chooses a door at all times, what is the expected lenght of time
until he reaches safety?



Example

Let X be the time until he reaches safety and Y be the door
number he initially chooses.

E (X ) =
3∑

i=1

E (X |Y = i)P{Y = i}

=

∑3
i=1 E (X |Y = i)

3

=
2 + [3 + E (X )] + [5 + E (X )]

3
⇒ E (X ) = 10

Computing Variances by Conditioning
Variance of a Geometric RV

To find Var (X ), we first condition on the result of the first trial.

E (X 2) = E [E (X 2|Y )]

= E

[
2∑

i=1

E (X 2|Y = i)P{Y = i}
]

= p + E
[
(1 + X )2

]
(1− p)

= 1 + 2(1− p)E (X ) + (1− p)E (X 2)⇒ E (X 2) =
2− p

p2

The variance is then computed as

Var (X ) =
1− p

p2



Conditional Variance

The conditional variance of X given that Y = y is

Var (X |Y = y) = E
{

[X − E (X |Y = y)]2
∣∣Y = y

}

= E
[
X 2
∣∣Y = y

]
− [E (X |Y = y)]2

We can compute the variance as

Var (X ) = E [ Var (X |Y )] + Var [E (X |Y )]

Computing Probabilities by Conditioning

The probability of event E , conditioned on some discrete RV Y is
defined as

P(E ) =
∑

y

P(E |Y = y)P{Y = y}

and on some continuous RV Y as

P(E ) =

∫ +∞

−∞
P(E |Y = y)fY (y)dy



Example

An insurance company assumes that the number of accidents that
each policyholder will have in a year is a Poisson RV with a mean
dependent on the policyholder. If the mean of the Poisson RV for
a randomly chosen policyholder is given by

g(λ) = λe−λ, λ ≥ 0

what is the probability that a randomly chosen policyholder will
have n accidents next year?

Example

Let X be the number of accidents for a random person and Y be
the Poisson mean for the person.

P{X = n} =

∫ ∞

0
P{X = n|Y = λ}gλdλ

=

∫ ∞

0

e−λλn

n!
λe−λdλ

=

(
n + 1

n + 1

)(
2n+2

2n+2

)
1

n!

∫ ∞

0
λn+1e−2λdλ

=
n + 1

2n+2

[
2n+2

(n + 1)!

∫ ∞

0
λn+1e−2λdλ

]

=
n + 1

2n+2

[∫ ∞

0
f (λ)dλ

]
, (f (λ) ∼ G (n + 2, 2))

=
n + 1

2n+2



Example

Let Xi . . .Xn be IID Bernoulli RVs with corresponding parameters
pi . We want to compute the PMF of X1 + . . .+ Xn. To do so, we
recursively compute the PMF of X1 + . . .+ Xk first for k = 1 ,
then, k = 2 etc. We thus let

pk(j) = P{X1 + . . .Xk = j}
We note that

pk(k) =
k∏

i=1

pi and pk(0) =
k∏

i=1

qi

Example

By conditioning on Xk for 0 < j < k

pk(j) = P{X1 + . . .Xk = j |Xk = 1}pk + P{X1 + . . .Xk = j |Xk = 0}qk
= P{X1 + . . .Xk−1 = j − 1|Xk = 1}pk
+ P{X1 + . . .Xk−1 = j |Xk = 0}qk
= P{X1 + . . .Xk−1 = j − 1}pk + P{X1 + . . .Xk−1 = j}qk
= pkPk−1(j − 1) + qkPk−1(j)



Example

Since we have,

pk(j) = pkPk−1(j − 1) + qkPk−1(j)

we start with the followings and solve the above equation
recurusively to obtain the functions P2(j), . . .Pn(j)

P1(1) = p1 and P0(0) = q1

Some Applications

I A List Model

I A Random Graph

I Uniform Priors

I Mean Time for Patterns

I The k-Record Values of Discrete RVs



A Random Graph

Consider a graph G = (V ,A) where

V = {1, . . . , n} and A = {(i , x(i)), i = 1, . . . , n}

where X (i) are independent RVs such that

P{X (i) = j} =
1

n
, j = 1, . . . , n

Such a graph is commonly referred as a random graph.
We are interested in the probability of a random graph is
connected.

A Random Graph

Define N equal the first k such that

X k(1) ∈ {1,X (1), . . . ,X k−1(1)}
By letting p(C ) be the probability that the graph is connected, we
can write

p(C ) =
n∑

k=1

P{C |N = kP{N = k}



A Random Graph

Lemma
Given a random graph with nodes 0, . . . , r and r arcs as (i ,Y (i)),
i = 1, . . . , r , where

Yi =

{
j , P{Yi = j} = 1/(r + k), j = 1, . . . , r
0, P{Yi = 0} = k/(r + k)

then

p(C ) =
k

r + k

which means that there are r + 1 nodes (r ordinary nodes and 1
super node), and a chosen arc from out of each ordinary node goes
to the super node and an ordinary node with respective
probabilities. See the proof in the text!

A Random Graph

We can write

p(c) =
E (N)

n

where we can show that

E (N) =
∞∑

i=1

P{N ≥ i}

and then

p(c) =
(n − 1)!

nn

n−1∑

j=0

nj

j!



A Random Graph

For simple approximation, assume that X is Poisson with mean n,

P{X < n} = e−n




n−1∑

j=0

nj

j!




Since a Poisson RV with mean n can be regarded as the sum of n
independent Poisson with mean 1, it follows from the CLT that, for
n large, such an RV is approximately normal, and thus,

p(C ) ≈ en(n − 1)!

2nn

by applying the Stirling approximation,

p(C ) ≈
√

π

2(n − 1)
e

(
n − 1

n

)n

⇒ lim
n→∞

p(C ) =

√
π

2(n − 1)

An Identity for Compound RVs

Let X1,X2, . . . be a sequence of IID RVs, and let Sn be the sum of
first n of them. We know that if N is a non-negative integer
valued RV that is independent of the sequence,

SN =
N∑

i=1

Xi

is said to be a compound RV and the distribution of N is said to
be the compounding distribution.



An Identity for Compound RVs

Let M be an RV that is independent of the sequence and such that

P{M = n} =
nP{N = n}

E (N)
, n = 1, 2, . . .

Proposition

We have, for any function h,

E [SNh(SN)] = E (N)E [X1h(SM)]

An Identity for Compound RVs

Corollary

P{SN = 0} = P{N = 0}

P{SN = k} =
1

k
E (N)

k∑

j=1

jαjP{SM−1 = k − j}, k > 0



Poisson Compounding Distribution

Let N be a Poisson RV with mean λ.

P{M − 1 = n} = P{M = n + 1}

=
(n + 1)P{N = n + 1}

E (N)

=
1

λ
(n + 1)e−λ

λn+1

(n + 1)!

= e−λ
λn

n!

Since M − 1 is also Poisson with mean λ, with P{SN = n},

P0 = e−λ and Pk =
k

λ

k∑

j=1

jαjPk−j , k > 0

Binomial Compounding Distribution
If N is a binomial RV with parameters r and p,

P{M − 1 = n} =
(n + 1)P{N = n + 1}

E (N)

=
n + 1

rp

(
r

n + 1

)
pn+1(1− p)r−n−1

=
n + 1

rp

r !

(r − 1− n)!(n + 1)!
pn+1(1− p)r−n−1

=
(r − 1)!

(r − 1− n)!n!
pn(1− p)r−n−1 ∼ B (r − 1, p)

Let N(r) be binomial with r and p and Pr (k) = P{SN(r) = k}

Pr (0) = (1− p)r and Pr (k) =
rp

k

k∑

j=1

jαjPr−1(k − j), k > 0



Thanks. Questions?


