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Stochastic Processes

Random Variables

Sometimes, in performing an experiment, we are interested in some
functions of the outcome as opposed to the outcome itself. These
quantities of interest, or more formally, these real-valued functions
defined on the sample space, are known as random variables (RVs).



Example

We let X denote the RV that is defined as the sum of two fair
dice. We then have

P{X = 2} = P{(1, 1)} =
1

36

P{X = 3} = P{(1, 2), (2, 1)} =
2

36

P{X = 4} = P{(1, 3), (2, 2)(3, 1)} =
3

36
. . . = . . .

P{X = 12} = P{(6, 6)} =
1

36

Example (cont.)

We also note that

P

{
12⋃

i=2

X = i

}
=

12∑

i=2

P{X = i} = 1



Example

We toss 2 coins. Let Y be the number of heads appearing. We
then have

P{Y = 0} = P{(t, t)} =
1

4

P{Y = 1} = P{(h, t), (t, h)} =
2

4

P{Y = 2} = P{(h, h)} =
1

4

We also note that P{Y = 0}+ P{Y = 1}+ P{Y = 2} = 1.

Example

Suppose that we toss a coin having a probability p of coming
heads until the first head appears. Let N be the number of flips
required, and assuming that the outcomes of successive flips are
independent, N is an RV with

P{N = 1} = P{h} = p

P{N = 2} = P{(t, h)} = (1− p)p

P{N = 3} = P{(t, t, h)} = (1− p)2p



Example (cont.)

In general,

P{N = n} = P{t, t, . . . , t, h} = (1− p)n−1p, n ≥ 1

We also note that

P

( ∞⋃

n=1

N = n

)
=

∞∑

n=1

P{N = n}

= p
∞∑

n=1

(1− p)n−1

=
p

1− (1− p)

= 1

Discrete and Continuous RVs

I RVs that take on either a finite or a countable number of
values are called discrete RVs, such as the number of heads or
tails when we flip 2 coins as in the above example

I RVs that take on continuous values are called continuous
RVs, such as the lifetime of a car.



Cumulative Distribution Function

The Cumulative Distribution Function (CDF) F of an RV X is
defined for any real number b as the probability of X takes on a
value that is less than or equal to b.

F (b) = P{X ≤ b}

I F (b) is a non-decreasing function of b.

I limb→−∞ F (b) = F (−∞) = 0

I limb→+∞ F (b) = F (+∞) = 1

We can answer all probability questions about X in terms of the
CDF F . How?

Discrete RVs

We define the Probability Mass Function (PMF) of X as

p(a) = P{X = a}
We also have

∞∑

i=1

p(xi ) = 1



Bernoulli RV

I X : 1 (success) or 0 (failure)

I p: probability of success

The PMF of X is

p(i) = P{X = i} = pi (1− p)1−i

where i = 0, 1.

Binomial RV

I X : number of successes

I n: number of trials

I p: probability of success in each trial

The PMF of X is

p(i) =

(
n

i

)
pi (1− p)n−i , i = 0, 1, 2, . . . , n

We note that

∞∑

i=0

p(i) =
n∑

i=0

(
n

i

)
pi (1− p)n−i = [p + (1− p)]n = 1



Example

It is known that a any item produced by a certain machine will be
defective with probability 0.1, independently of any other item.
What is the probability that in a sample of 3 items, at most 1 will
be defective?

Let X be the number of defective items.

P{X = 0}+ P{X = 1} =

(
3

0

)
(.1)0(.9)3 +

(
3

1

)
(.1)1(.9)2 = .972

Example

Suppose that an airplane engine will fail, when in flight, with
probability 1− p, independently from the engine to engine. If the
airplane makes a successful flight when at least 50% of its engines
are operative, for what p values a 4-engine airplane is safer than a
2-engine airplane?



Example (cont.)

Suppose that an airplane engine will fail, when in flight, with
probability 1− p, independently from the engine to engine. If the
airplane makes a successful flight when at least 50% of its engines
are operative, for what p values a 4-engine airplane is safer than a
2-engine airplane?

Let X and Y be the number of operative engines for 4 and
2-engine airplanes, respectively.

Example (cont.)

For a 4-engine airplane, we have

4∑

i=2

P{X = i} =

(
4

2

)
p2(1− p)2 +

(
4

3

)
p3(1− p)1 +

(
4

4

)
p4(1− p)0

= p4 + 4p3(1− p) + 6p2(1− p)2

For a 2-engine airplane, we have

2∑

i=1

P{X = i} =

(
2

1

)
p1(1− p)1 +

(
2

2

)
p2(1− p)0

= p2 + 2p(1− p)



Example (cont.)

A 4-engine airplane is safer if

p4 + 4p3(1− p) + 6p2(1− p)2 ≥ p2 + 2p(1− p)

p3 + 4p2(1− p) + 6p(1− p)2 ≥ −p + 2

3p3 − 8p2 + 7p − 2 ≥ 0

(p − 1)2(3p − 2) ≥ 0

(3p − 2) ≥ 0

p ≥ 2

3

Geometric RV

I X : number of trials until the first success

I p: probability of success in each trial

The PMF of X is

p(i) = (1− p)i−1p, i = 1, 2, . . .

We also have

∞∑

i=1

p(i) = p
∞∑

i=1

(1− p)n−1 =
p

1− (1− p)
= 1



Poisson RV

I X : number of outcomes during a unit time period

I λ: rate

The PMF of X , for λ > 0 is

p(i) =
e−λλi

i !
, i = 0, 1, . . .

We also note that

∞∑

i=0

p(i) = e−λ
∞∑

i=0

λi

i !
= e−λeλ = 1

Poisson Approximation to Binomial

When n is large and p is small, a binomial RV can be
approximated by Poisson.

Let X be Binomial with (n, p) and λ = np.

p(i) =
n!

(n − i)!i !
pi (1− p)n−i

=
n!

(n − i)!i !

(
λ

n

)i (
1− λ

n

)n−i

=
n(n − 1) . . . (n − i + 1)

ni
λi

i !

(
1− λ

n

)n
(
1− λ

n

)i



Poisson Approximation to Binomial

Let X be Binomial with (n, p) and λ = np.

p(i) =
n!

(n − i)!i !
pi (1− p)n−i

=
n!

(n − i)!i !

(
λ

n

)i (
1− λ

n

)n−i

=
n(n − 1) . . . (n − i + 1)

ni
λi

i !

(
1− λ

n

)n
(
1− λ

n

)i

Since n is large and p is small, we have

(
1− λ

n

)n

≈ e−λ,
n(n − 1) . . . (n − i + 1)

ni
≈ 1,

(
1− λ

n

)i

≈ 1

Poisson Approximation to Binomial

As a result,

p(i) =
n(n − 1) . . . (n − i + 1)

ni
λi

i !

(
1− λ

n

)n
(
1− λ

n

)i

Since n is large and p is small, we have

(
1− λ

n

)n

≈ e−λ,
n(n − 1) . . . (n − i + 1)

ni
≈ 1,

(
1− λ

n

)i

≈ 1

and thus, we have

p(i) ≈ e−λ
λi

i !



Continuous RVs

X is continuous RV if there exists a non-negative function f (x)
defined for all real X ∈ (−∞,+∞), having the property that for
any set B of real numbers

P{X ∈ B} =

∫

B
f (x)dx

The function f (x) is called the probability density function (PDF)
of the RV X . The probability that X is in B can be computed by
integrating the PDF over set B.

Continuous RVs

We have

P{X ∈ (−∞,+∞)} =

∫ +∞

−∞
f (x)dx = 1

and the probability that X ∈ [a, b] is computed as

P{a ≤ X ≤ b} =

∫ b

a
f (x)dx

What is the difference between P{a ≤ X ≤ b} and
P{a < X < b}?



Continuous RVs

The cumulative distribution function of X is

F (a) = P{X ∈ (−∞, a]} =

∫ a

−∞
f (x)dx

Differentiating the preceding, we obtain

d

da
F (a) = f (a)

Uniform RV

Let X be a uniform RV on the interval (α, β). Its PDF

f (x) =

{ 1
β−α , α < x < β

0, otherwise

The CDF of a uniform RV X is

F (x) =





0, x ≤ α
x−α
β−α , α < x < β

1, x ≥ β



Exponential RV

Let X be an exponential RV with parameter λ. Its PDF

f (x) =

{
λe−λx , x ≥ 0

0, otherwise

The CDF of an exponential RV X is

F (x) =

{
1− e−λx , x ≥ 0

0, otherwise

Gamma RV

Let X be a gamma RV with parameters λ and α. Its PDF

f (x) =

{
λe−λx (λx)α−1

Γ(α) , x ≥ 0

0, otherwise

for some α > 0 and λ > 0. The gamma function is defined as

Γ(α) =

∫ ∞

0
e−xxα−1dx

and we can show that, for some integer n,

Γ(n) = (n − 1)!



Normal RV

Let X be a normal RV with parameters µ and σ2. Its PDF

f (x) =
1√

2πσ2
e−

(x−µ)2

2σ2

for x ∈ (−∞,+∞).

Normal RV

If X is normally distributed with µ and σ2, then, Y = αX + β is
normally distributed with parameters αµ+ β and α2σ2. How to
prove that?



Normal RV

Suppose that α > 0, and the CDF of Y is as follows:

FY (a) = P{Y ≤ a}
= P{αX + β ≤ a}

= P

{
X ≤ a− β

α

}

= FX

(
a− β
α

)

=

∫ (a−β)/α

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx (set v = αx + β)

=

∫ a

−∞

1√
2πσ2α2

e−
[v−(αµ+β)]2

2σ2α2 dv

Normal RV

Since we have

FY (a) =

∫ a

−∞

1√
2πσ2α2

e−
[v−(αµ+β)]2

2σ2α2 dv

we can write,

fY (v) =
1√

2πσ2α2
e−

[v−(αµ+β)]2

2σ2α2

Hence, Y is normally distributed with parameters αµ+ β and
α2σ2.

X ∼ N (µ, σ2)⇒ Y = αX + β ∼ N (αµ+ β, α2σ2)



Standard Normal RV

We proved that if X is normally distributed with µ and σ2, then,
Y = αX + β is normally distributed with parameters αµ+ β and
α2σ2.

X ∼ N (µ, σ2)⇒ Y = αX + β ∼ N (αµ+ β, α2σ2)

An implication of the preceding result is that if X is normally
distributed with parameters µ and σ2, then,

Z =
X − µ
σ

is normally distributed with parameters 0 and 1, and such an RV Y
is said to be a standard normal RV.

Expectation of a Discrete RV

Expectation of a discrete RV X is defined as

E (X ) =
∑

x :p(x)>0

xp(x)

If we let X be the outcome when we roll a die,

E (X ) =
6∑

x=1

xp(x) =
1

6

6∑

x=1

x = ��(6)(7)

��(6)(2)
=

7

2



Expectation of a Binomial RV

E (X ) =
n∑

i=0

(
n

i

)
pi (1− p)n−i

=
n∑

i=1

in!

(n − i)!i !
pi (1− p)n−i

=
n∑

i=1

n!

(n − i)!(i − 1)!
pi (1− p)n−i

= np
n∑

i=1

(n − 1)!

(n − i)!(i − 1)!
pi−1(1− p)n−i ; let k = i − 1

= np
n−1∑

k=0

(
n − 1

k

)
pk(1− p)n−1−k

= np[p + (1− p)]n−1 = np

Expectation of a Geometric RV

E (X ) =
∞∑

i=1

ip(1− p)i−1 ; let q = 1− p

= p
∞∑

i=1

iqi−1

= p
∞∑

i=1

dqi

dq

= p
d

dq

( ∞∑

i=1

qn

)

= p
d

dq

(
q

1− q

)

=
p

(1− q)2
=

1

p



Expectation of a Poisson RV

E (X ) =
∞∑

i=0

ie−λλi

i !

=
∞∑

i=1

e−λλi

(i − 1)!

= λe−λ
∞∑

i=1

λi−1

(i − 1)!

= λe−λ
∞∑

k=0

λk

k!

= λe−λeλ

= λ

Expectation of a Continuous RV

Expectation of a discrete RV X is defined as

E (X ) =

∫ +∞

−∞
xf (x)dx



Expectation of a Uniform RV

E (X ) =

∫ +∞

−∞
xf (x)dx

=

∫ β

α

xdx

β − α

=
β2 − α2

β − α
=

α + β

2

Expectation of an Exponential RV

E (X ) =

∫ +∞

−∞
xf (x)dx

=

∫ ∞

0
xλe−λxdx

=
(
−xe−λx

)∣∣∣
∞

0
−
∫ ∞

0
e−λxdx

= 0−
(
e−λx

λ

)∣∣∣∣
∞

0

=
1

λ



Expectation of a Normal RV

E (X ) =

∫ +∞

−∞
xf (x)dx

=
1√

2πσ2

∫ +∞

−∞
xe−

(x−µ)2

2σ2 dx ; let x = (x − µ) + µ

=
1√

2πσ2

∫ +∞

−∞
(x − µ)e−

(x−µ)2

2σ2 dx

+
µ√

2πσ2

∫ +∞

−∞
e−

(x−µ)2

2σ2 dx ; let y = (x − µ)

=
1√

2πσ2

∫ +∞

−∞
ye−

y2

2σ2 dy + µ

∫ +∞

−∞
f (x)dx

= 0 + µ

= µ

Expectation of a Function of an RV
Proposition

Proposition

If X is discrete RV with a PMF p(x), then, for any real-valued
function g , we have

E [g(x)] =
∑

x :p(x)>0

g(x)p(x)

If X is continuous RV with a PDF f (x), then, for any real-valued
function g , we have

E [g(x)] =

∫ +∞

−∞
g(x)f (x)dx



Expectation of a Function of an RV

Corollary
If a and b are constants, then, we have

E (aX + b) = aE (x) + b

Proof (for the Discrete Case)

E (aX + b) =
∑

x :p(x)>0

(ax + b)p(x)

= a
∑

x :p(x)>0

xp(x) +
∑

x :p(x)>0

p(x)

= aE (X ) + b

Moment of an RV

I The expected value of an RV is also referred as the mean or
the first moment of the RV.

I E (X ) is called as the first moment of X .

I In general, E (X n), n ≥ 1 is called as the nth moment of X .



Moment of an RV

If X is discrete,
E (X n) =

∑

x :p(x)>0

xnp(x)

If X is continuous,

E (X n) =

∫ +∞

−∞
xnf (x)dx

Variance

Another quantity of interest is the variance of an RV defined as
follows:

Var (X ) = E
{

[X − E (X )]2
}

It measures the expected square of the deviation of the RV from
its expected value.



Another Variance Expression

Var (X ) = E
[
(X − µ)2

]

= E
(
X 2 − 2µX + µ2

)

=

∫ +∞

−∞

(
x2 − 2µx + µ2

)
f (x)dx

=

∫ +∞

−∞
x2f (x)dx − 2µ

∫ +∞

−∞
xf (x)dx + µ2

∫ +∞

−∞
f (x)dx

= E
(
X 2
)
− 2µ2 + µ2

= E (X 2)− µ2

Prove for the discrete case!

Jointly Distributed RVs

We define, for any two RVs X and Y , the joint cumulative
distribution function of X and Y as

F (a, b) = P{X ≤ a,Y ≤ b}, −∞ < a, b < +∞
The distribution of X and Y alone can be obtained from the joint
distribution as follows:

FX (a) = P{X ≤ a} = P{X ≤ a,Y <∞} = F (a,∞)

FY (b) = P{Y ≤ b} = P{X <∞,Y ≤ b} = F (∞, b)



Jointly Distributed RVs

For two discrete RVs X and Y , we can write

p(x , y) = P{X = x ,Y = y}
The PMF of X and Y are

pX (x) =
∑

y :p(x ,y)>0

p(x , y)

pY (y) =
∑

x :p(x ,y)>0

p(x , y)

Jointly Distributed RVs

For two continuous RVs X and Y , we can write

P{X ∈ A,Y ∈ B} =

∫

B

∫

A
f (x , y)dxdy

The PMF of X and Y are

P{X ∈ A} = P{X ∈ A,Y ∈ (−∞,+∞)} =

∫ +∞

−∞

∫

A
f (x , y)dxdy

=

∫

A
fX (x)dx

P{Y ∈ B} = P{X ∈ (−∞,+∞),Y ∈ B} =

∫

B

∫ +∞

−∞
f (x , y)dxdy

=

∫

B
fY (y)dy



Expectation of Jointly Distributed RVs

For two discrete RVs X and Y , we can write

E [g(X ,Y )] =
∑

y

∑

x

g(x , y)p(x , y)

For two continuous RVs X and Y , we can write

E [g(X ,Y )] =

∫ +∞

−∞

∫ +∞

−∞
g(x , y)f (x , y)dxdy

Example: Expectation of a Binomial RV

If X is a binomial RV with parameters n and p, we can write,

X =
n∑

i=1

Xi

where Xi is a Bernoulli RV each with expectation E (X ) = p.
Hence,

E (X ) =
n∑

i=1

E (Xi ) = np



Example

Suppose that there are 25 different types of coupons and suppose
that each time we select a coupon, it is equally likely to be any one
of the 25 types. Compute the expected number of different types
that are contained in a set of 10 coupons.

We first let X be the number of different coupons in a set of 10
coupons.

X =
25∑

i=1

Xi

where

Xi =

{
1, if at least 1 type i coupon is in the set
0, otherwise

Example

We thus have,

E (Xi ) = P{Xi = 1}
= P{ if at least 1 type i coupon is in the set}
= 1− P{ no type i coupon is in the set}

= 1−
(

24

25

)10

⇒ E (X ) =
25∑

i=1

E (Xi ) = 25

[
1−

(
24

25

)10
]



Independent RVs

The RVs X and Y are said to be independent if, for all a, b,

P{X ≤ a,Y ≤ b} = P{X ≤ a}P{Y ≤ b}
In terms of joint CDFs,

F (a, b) = FX (a)FY (b), ∀a, b
When X and Y are discrete,

p(x , y) = px(x)pY (y)

and when continuous

f (x , y) = fx(x)fY (y)

Covariance and Variance of Sums of RVs

Cov (X ,Y ) = E{[X − E (X )][Y − E (Y )]}
= E [XY − YE (X )− XE (Y ) + E (X )E (Y )]

= E (XY )− E (Y )E (X )− E (X )E (Y ) + E (X )E (Y )

= E (XY )− E (X )E (Y )

Note that, when X and Y are independent, Cov (X ,Y ) = 0.



Properties of Covariance

For any RVs, X , Y , Z and constant c , we have

I Cov (X ,X ) = Var (X )

I Cov (X ,Y ) = Cov (Y ,X )

I Cov (cX ,Y ) = c Cov (X ,Y )

I Cov (X ,Y + Z ) = Cov (X ,Y ) + Cov (X ,Z )

We can also show that

Cov




n∑

i=1

Xi ,

m∑

j=1

Yj


 =

n∑

i=1

m∑

j=1

Cov (Xi ,Yj)

Variance of the Sum of RVs

Var

(
n∑

i=1

Xi

)
= Cov




n∑

i=1

Xi ,
m∑

j=1

Xj




=
n∑

i=1

m∑

j=1

Cov (Xi ,Xj)

=
n∑

i=1

Cov (Xi ,Xi ) +
n∑

i=1

∑

j 6=i

Cov (Xi ,Xj)

=
n∑

i=1

Var (Xi ) +
n∑

i=1

∑

j<i

Cov (Xi ,Xj)



Sample Mean

If X1, . . . ,Xn are IID, then, the RV X̄ is called the sample mean
and defined as

X̄ =

∑n
i=1 Xi

n

Proposition

Suppose that X1, . . . ,Xn are IID with with expected value µ and
variance σ2. We can then write

I E (X̄ ) = µ

I Var (X̄ ) = σ2/n

I Cov (X̄ ,Xi − X̄ ) = 0, i = 1, . . . , n

Variance of a Binomial RV

We can let X =
∑n

i=1 Xi where Xi are independent Bernoulli RVs.
Hence,

X =
n∑

i=1

Xi ⇒ Var (X ) = Var

(
n∑

i=1

Xi

)

= Var

(
n∑

i=1

{
E (X 2

i )− [E (Xi )]2
}
)

= Var

(
n∑

i=1

{
E (Xi )− [E (Xi )]2

}
)

= Var
n∑

i=1

(p − p2)

= np(1− p)



Sum of 2 Independent Uniform RVs

If X and Y are independent uniform variables on (0, 1), the
probability distribution of X + Y ,

fX+Y (a) =

∫ 1

0
f (a− y)dy ⇒ fX+Y (a) =

∫ a

0
dy = a, 0 ≤ a ≤ 1

fX+Y (a) =

∫ 1

a−1
dy = 2− a, 1 < a < 2

Hence,

fX+Y (a) =





a, 0 ≤ a ≤ 1
2− a, 1 < a < 2

0, otherwise

Sums of Independent Poisson RVs

Let X and Y be independent Poisson RVs with respective means
λ1 and λ2. What is the distribution of X + Y ?

The event {X + Y = n} can be written as the intersection of the
mutually exclusive events {X = k ,Y = n − k}, where 0 ≤ k ≤ n.



Sums of Independent Poisson RVs

P{X + Y = n} =
n∑

k=0

P{X = k ,Y = n − k}

=
n∑

k=0

P{X = k}P{Y = n − k}

=
n∑

k=0

e−λ1λk1
k!

e−λ2λn−k2

(n − k)!

= eλ1+λ2

n∑

k=0

λk1λ
n−k
2

k!(n − k)!

=
eλ1+λ2

n!

n∑

k=0

n!

k!(n − k)!
λk1λ

n−k
2

=
eλ1+λ2

n!
(λ1 + λ2)n ⇒ Poisson with mean λ1 + λ2

Moment Generating Function

The Moment Generating Function (MGF) φ(t) of RV X is defined,
∀t, as

φ(t) = E
(
etX
)

=
∑

x

etxp(x)

when X is discrete and

φ(t) = E
(
etX
)

=

∫ +∞

−∞
etx f (x)dx

when X is continuous.



Moment Generating Function

All moments of X can be obtained by successively differentiating
the MGF.

φ′(t) =
d

dt
E
(
etX
)

= E

[
d

dt

(
etX
)]

= E
(
XetX

)
⇒ φ′(0) = E (X )

Moment Generating Function

Also note that

φ′′(t) =
d

dt
φ′(t)

=
d

dt
E
(
XetX

)

= E

[
d

dt

(
XetX

)]

= E
(
X 2etX

)
⇒ φ′′(0) = E (X 2)



Moment Generating Function

In general, the nth derivative of the MGF evaluated at t = 0
equals E (X n), that is,

φn(0) = E (X n), n ≥ 1

Example

Compute the variance of a binomial RV with parameters n, p.

φ(t) = E (etX )

=
n∑

k=0

etk
(
n

k

)
pk(1− p)n−k

=
n∑

k=0

(
n

k

)
(pet)k(1− p)n−k

= (pet + 1− p)n



Example

Since

φ(t) = (pet + 1− p)n

the moments are

φ′(t) = n(pet + 1− p)n−1pet

φ′′(t) = n(n − 1)(pet + 1− p)n−2(pet)2 + n(pet + 1− p)n−1

and so

E (X ) = φ′(0) = np and E (X 2) = φ′′(0) = n(n−1)p2+np = np(1−p)

Example

Compute the variance of a Poisson RV with parameter λ.

φ(t) = E (etX )

=
∞∑

n=0

etne−λ
λn

n!

= e−λ
∞∑

n=0

(λet)n

n!

= e−λ exp {λ(et)}
= exp {λ(et − 1)}



Example

Since

φ(t) = exp {λ(et − 1)}
the moments are

φ′(t) = λet exp {λ(et − 1)}
φ′′(t) = (λet)2 exp {(λet − 1)}+ λet exp {λ(et − 1)}

and so

E (X ) = φ′(0) = λ and E (X 2) = φ′′(0) = λ2 + λ

The variance is computed as

Var (X ) = E (X 2)− [E (X )]2 = λ

Example

Compute the variance of an exponential RV with parameter λ.

φ(t) = E (etX )

=

∫ ∞

0
etxλe−λxdx

= λ

∫ ∞

0
e−(λ−t)xdx

=
λ

λ− t
for t < λ



Example

We then have,

φ(t) =
λ

λ− t
⇒
{
φ′(t) = λ

(λ−t)2

φ′′(t) = 2λ
(λ−t)3

and so

E (X ) = φ′(0) =
1

λ
and E (X 2) = φ′′(0) =

2

λ2

The variance is computed as

Var (X ) = E (X 2)− [E (X )]2 =
1

λ2

Example

Compute the variance of a normal RV with parameters µ, σ2.

φ(t) = E (etZ )

=
1√
2π

∫ +∞

−∞
etxe−x

2/2dx

=
1√
2π

∫ +∞

−∞
e−(x2−2tx)/2dx

=
et

2/2

√
2π

∫ +∞

−∞
e−(x−t)2/2dx

= et
2/2

Note that Z is a standard normal RV, which means, X = σZ + µ
is a normal RV with parameters µ and σ2.



Example

We can then write,

φ(t) = E (etX ) = E [e(σZ+µ)] = etµE (etσZ ) = exp

{
µt +

σ2t2

2

}

φ′(t) = (µ+ σ2t) exp

{
µt +

σ2t2

2

}

φ′′(t) = (µ+ σ2t)2 exp

{
µt +

σ2t2

2

}
+ σ2 exp

{
µt +

σ2t2

2

}

and so

E (X ) = φ′(0) = µ and E (X 2) = φ′′(0) = µ2+σ2 ⇒ Var (X ) = σ2

MGF of the Sum of Independent RVs

MGF of the sum of independent RVs is just the product of the
individual MGFs. To show this, assume that independent RVs X
and Y have MGFs φX (t) and φY (t), respectively. The MGF of
X + Y is given as

φX+Y (t) = E [et(X+Y )]

= E (etX etY ) (by independence)

= E (etX )E (etY )

= φX (t)φY (t)



The Laplace Transform

For a non-negative RV X , it is convinient to use the Laplace
transform g(t) , t ≥ 0 as

g(t) = φ(−t) = E (e−tX )

The advantage of using the Laplace transform is that it is always
between 0 and 1 when the RV is non-negative. That is,

0 ≤ e−tX ≤ 1, X ≥ 0, t ≥ 0

Also note that, like for MGFs, if the RVs have the same Laplace
transform, they must have the same distribution (for non-negative
RVs).

The Chi-Squared Distribution

Definition
If Z1, . . . ,Zn are independent standard normal RVs, then, the RV
X , defined as follows, is said to be a chi-squared RV with n
degrees of freedom.

X =
n∑

i=1

Z 2
i ∼ C-S (n)



The Chi-Squared Distribution

Proposition

If X1, . . . ,Xn are IID normal RVs with mean µ and variance σ2,
then, the sample mean X̄ and the sample variance S2 are
independent, and X̄ is a normal RV with mean µ and variance
σ2/n.
We also note that the following is a chi-squared RV with n − 1
degrees of freedom:

(n − 1)S2

σ2
∼ C-S (n − 1)

Limit Theorems

Proposition (Markov’s Inequality)

If X is a non-negative RV, then, for any k,

P{X ≥ k} ≤ E (X )

k

Proposition (Chebyshev’s Inequality)

If X is an RV with mean µ and variance σ2, then, for any k ,

P{|X − µ| ≥ k} ≤ σ2

k2



Limit Theorems

Theorem (Strong Law of Large Numbers)

Let X1, . . . ,Xn be a sequence of IID RVs, and let E (Xi ) = µ,
i = 1, . . . , n. We can then write,

lim
n→∞

∑n
i=1 Xi

n
= µ

Limit Theorems

Theorem (Central Limit Theorem)

Let X1, . . . ,Xn be a sequence of IID RVs, and let E (Xi ) = µ and
Var (Xi ) = σ2, i = 1, . . . , n. We can then write,

lim
n→∞

P

{∑n
i=1 Xi − nµ

σ
√
n

≤ k

}
=

1√
2π

∫ k

−∞
e−x

2/2dx



Limit Theorems

Normal Approximation to Binomial

If X is binomial with parameters n and p, then, we can write

lim
n→∞

P

{
X − E (X )√

Var(X )
=

X − np√
np(1− p)

≤ k

}
=

1√
2π

∫ k

−∞
e−x

2/2dx

The normal approximation is generally quite good when
np(1− p) ≥ 10.

Example: Normal Approximation to Binomial

Let X be the number of heads when we flip a coin for 40 times.
Find the probability that X = 20.

P{X = 20} = P{19.5 < X < 20.5}

= P

{
19.5− 20√

10
<

X − 20√
10

<
20.5− 20√

10

}

= P

{
−0.16 <

X − 20√
10

< 0.16

}

= Φ(0.16)− Φ(−0.16) = 0.1272

wheras the exact result is

P{X = 20} =

(
40

20

)(
1

2

)20(
1− 1

2

)20

= 0.1268



Statistical Inference and Estimation

A statistic θ̂ is an unbiased estimator of the population parameter
θ if

E (θ̂) = θ

and, of all the estimators, the one with the smallest variance is
called the most efficient estimator of of θ.
Given independent observations x1, . . . , xn from a PMF or PDF,
the maximum likelihood estimator (MLE) θ̂ maximizes the
likelihood function

L(x1, . . . , xn; θ) = f (x1, θ) . . . f (xn, θ)

Statistical Inference and Estimation

I Can you use x̄ and s2 to estimate µ and σ2, respectively?
Why?

I For example, can you use the following likelihood function to
obtain the MLEfor a Poisson distribution with mean λ?

L(x1, . . . , xn;λ) =
n∏

i=1

p(xi |λ) =
e−nλλ(

∑n
i=1 xi)

∏n
i=1 (xi )!

The log-likelihood is then

ln [L(x1, . . . , xn;λ)] = −nλ+
n∑

i=1

lnλ− ln

(
n∏

i=1

(xi )!

)

∂ ln [L(x1, . . . , xn;λ)]

∂λ
= −n +

n∑

i=1

xi
λ

(continue...)



Stochastic Processes

I A stochastic process {X (t), t ∈ T} is a collection of RVs.

I The index t is often referred as time.

I We refer to X (t) as the state of the process at time t.

I The set T is called as the index set.

I When T is countable, we refer to the stochastic process as
the discrete-time process.

I When T is uncountable, we refer to the stochastic process as
the continuous-time process.

The End
Questions?


