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Probability Models

I Any realistic model of a real-world phenomenon must take
into account the possibility of randomness.

I In general, the quantities we are interested in will not be
predictable in advance but, rather, will exhibit an inherent
variation that should be taken into account by the model.

I This is usually accomplished by allowing the model to be
probabilistic in nature.

I Such a model is, naturally enough, referred to as a probability
model.

Sample Space

The set of all outcomes of an experiment is known as the sample
space, and is denoted by S . Some examples are

1. Flipping a coin: S = {h, t}.
2. Rolling a die: S = {1, 2, . . . , 6}
3. Flipping two coins: S = {(h, h), (h, t), (t, h), (t, t)}
4. Rolling two dice: S = {(i , j)|1 ≤ i , j ≤ 6}
5. Measuring the life of a car: S = [0,∞)



Events

Any subset E of the sample space S is known as an event. Some
examples are

1. E = {h}.
2. E = {1, 2, 3}, F = {3, 4, 5}
3. E = {(h, h), (h, t)}
4. E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
5. S = (1, 10)

Union, Intersection, Compliment

I For any two events E and F , the union of the events consist
of all outcomes that are either in E or in F or in both, and is
denoted by E ∪ F .

I For any two events E and F , the intersection of the events
consist of all outcomes that are both in E and in F , and is
denoted by E ∩ F or EF .

I If EF = Φ, then, E and F are said to be mutually exclusive.

I For an event E , the compliment of the event consist of all
outcomes in sample space S that are not in E , and denoted
by E c .



Probability of an Event

We refer to P(E ) as the probability of event E if it satisfies the
following conditions:

I 0 ≤ P(E ) ≤ 1

I P(S) = 1

I For any sequence of events E1,E2, . . . that are mutually
exclusive

P

( ∞⋃

i=1

Ei

)
=

∞∑

i=1

P(Ei )

Example

I In the die tossing example, if all outcomes are equally likely,
we have

P({1}) = P({2}) = . . . = P({6}) =
1

6

I The probability of getting an even number is given by

P({2, 4, 6}) = P({2}) = P({4}) = P({6}) =
1

2



Example

If we toss two coins and suppose that each outcome is equally
likely, and let the events E and F defined as the first coin falls
heads and the second coin falls heads, respectively. That is,
E = {(h, h), (h, t)} and F = {(h, h), (t, h)} The probability that
either the first or the second coin falls heads is then given by

P(E ∪ F ) = P(E ) + P(F )− P(EF )

=
1

2
+

1

2
− P{(h, h)}

= 1− 1

4

=
3

4
= P{(h, h), (h, t), (t, h)}

Union of More than 2 Events

We can compute the probability of the union of 3 events as

P(E ∪ F ∪ G ) = P[(E ∪ F ) ∪ G ]

= P(E ∪ F ) + P(G )− P[(E ∪ F )G ]

= P(E ) + P(F )− P(EF ) + P(G )− P(EG ∪ FG )

= P(E ) + P(F )− P(EF ) + P(G )

− P(EG )− P(FG ) + P(EGFG )

= P(E ) + P(F ) + P(G )

− P(EF )− P(EG )− P(FG ) + P(EFG )



Union of More than 2 Events

In general, we can show that

P(E1 ∪ E2 . . . ∪ En) =
∑

i

P(Ei )

−
∑

i<j

P(EiEj) +
∑

i<j<k

P(EiEjEk)− . . .

+ (−1)n+1P(E1E2 . . .En)

Conditional Probabilities

If the event F occurs, then, in order for E to occur it is necessary
for the actual occurrence to be a point in both E and F , that is, it
must be in EF . Now, since we know that F has occurred, it
follows that F becomes our new sample space and hence, the
probability that the event EF occurs will equal the probability of
EF relative to the probability of F . That is,

P(E |F ) =
P(EF )

P(F )

We note that P(F ) > 0 is required for the above equation to be
well-defined.



Example 1.4

10 cards are numbered from 1 to 10 and placed in a hat. Someone
draw a card from the hat. If she says the number is at least 5,
then, what is the conditional probability that it is 10?

We let E be the event that the number is 10 and F be the event
that the number is at least 5. We then need to compute the
probability P(E |F ) as

P(E |F ) =
P(EF )

P(F )
=

1
10
6
10

=
1

6

Example 1.5

A family has 2 children. What is the conditional probability that
both are boys given that at least one of them is a boy?

We let E be the event that the both children are boys and F be
the event that the number is at least one of them is a boy. We
then need to compute the probability P(E |F ) as

P(E |F ) =
P(EF )

P(F )
=

P({(b, b)})
P{(b, b), (b, g), (g , b)} =

1
4
3
4

=
1

3



Example 1.7

An urn contains 7 black and 5 white balls. We draw 2 balls
without replacement. What is the probability that both are black?

Let F and E be the events that the first and second balls are
black, respectively. The probability that the second ball is black
given that the first ball is black is P(E |F ) = 6/11. Since
P(F ) = 7/12, we have

P(EF ) = P(F )P(E |F ) =
7

12

6

11
=

7

22

Example 1.8

Suppose that 3 men at a party throw their hats into the center of
the room. The hats are somehow mixed up, and then, each man
randomly selects a hat. What is the probability that none of them
selects his own hat?

We will first use the complementary probability that at least one
man selects his own hat. Let Ei be the probability that the ith man
selects his own hat. For that, we need to compute P(E1 ∪E2 ∪E3).



Example 1.8 (cont.)

Note that,

P(Ei ) =
1

3
, i = 1, 2, 3

P(EiEj) =
1

6
, i 6= j

P(E1E2E3) =
1

6

Why is this correct?

Example 1.8 (cont.)

Now,

P(E1 ∪ E2 ∪ E3) = P(E1) + P(E2) + P(E3)− . . .+ P(E1E2E3)

= 1− 1

2
+

1

6

=
2

3
⇒ 1− P(E1 ∪ E2 ∪ E3) =

1

3



Independent Events

Events E and F are independent if

P(EF ) = P(E )P(F )

which also implies

P(E |F ) = P(E ) and P(F |E ) = P(F )

If E and F are not independent, they are said to be dependent.

Example 1.9

We toss 2 fair dice. Let E and F be the events that the sum of
dice is 6 and the first die equals 4, respectively. Are they
independent? Why?

Since we have

P(EF ) = P({4, 2}) =
1

36
6= P(E )P(F ) =

5

36

1

6
=

5

216

the events are not independent. How do you interpret this?



Example 1.9 (cont.)

How about if change the definition of event E and let it be the
event that the sum of dice is 7. Are they independent now? Why?

Now, since

P(EF ) = P({4, 3}) =
1

36
= P(E )P(F ) =

1

6

1

6
=

1

36

the events are now independent. Why?

Example 1.10:

Let a ball drawn from an urn containing 4 balls numbered from 1
to 4, and define E = {1, 2}, F = {1, 3} and G = {1, 4}.

P(EF ) = P(E )P(F ) =
1

4

P(EG ) = P(E )P(G ) =
1

4

P(FG ) = P(F )P(G ) =
1

4

However, the events are pairwise independent (but not
independent) since

1

4
= P(EFG ) 6= P(E )P(F )P(G ) =

1

8



Independent Trials

Suppose that a sequence of experiments, each of which results
either a ”success” or a ”failure”, is to be performed. We let Ei ,
i ≥ 1, denote the event that the ith experiment results in a
success. If, for all i1, i2, . . . , in,

P(Ei1Ei2 . . .Ein) =
n∏

j=1

P(Eij )

we say that the sequence of events consists of independent trials.

Bayes’ Formula

We can write, for events E and F , that E = EF ∪ EF c . Since EF
and EF c are mutually exclusive, we can have

P(E ) = P(EF ) + P(EF c)

= P(E |F )P(F ) + P(E |F c)P(F c)

= P(E |F )P(F ) + P(E |F c)[1− P(F )]

How do we interpret this?



Example 1.12

Consider 2 urns. The first one contains 2 white and 7 black balls,
and the second one contains 5 white and 6 black balls. We flip a
fair coin and draw a ball from the first or second urn depending on
whether the outcome was heads or tails. What is the conditional
probability that the outcome of the toss was heads given that a
white ball was selected?

Let W and H be the events that a white ball is drawn and that the
coin comes up heads.

Example 1.12 (cont.)

The desired probability P(H|W ) is computed as follows:

P(H|W ) =
P(HW )

P(W )

=
P(W |H)P(H)

P(W )

=
P(W |H)P(H)

P(W |H)P(H) + P(W |Hc)P(Hc)

=
2
9
1
2

2
9
1
2 + 5

11
1
2

=
22

67



Example 1.13

In answering a question on a multiple-choice test a student either
knows the answer or guesses. Let p be the probability that she
knows the answer and 1− p the probability that she guesses.
Assume that a student who guesses at the answer will be correct
with probability 1/m, where m is the number of multiple-choice
alternatives. What is the conditional probability that a student
knew the answer to a question given that she answered it correctly?

Let C and K be the events that she answers the question correctly
and that she knows the answer, respectively.

Example 1.13 (cont.)

The desired probability P(K |C ) is computed as follows:

P(K |C ) =
P(KC )

P(C )

=
P(C |K )P(K )

P(C )

=
P(C |K )P(K )

P(C |K )P(K ) + P(C |K c)P(K c)

=
p

p + 1
m (1− p)

=
mp

1 + (m − 1)p



Bayes’ Formula

Suppose that F1,F2, . . . ,Fn are mutually exclusive events such that

n⋃

i=1

Fi = S

In other words, exactly one of the events F1,F2, . . . ,Fn will occur.
We can write

E =
n⋃

i=1

EFi

Bayes’ Formula (cont.)

Since EFi , i = 1, . . . , n, are mutually exclusive, we obtain that

P(E ) =
n∑

i=1

P(EFi )

=
n∑

i=1

P(E |Fi )P(Fi )

which states that the P(E ) is equal to a weighted average of
P(E |Fi ), each term being weighted by the probability of the event
on which it is conditioned.



Bayes’ Formula (cont.)

If we suppose that E has occurred and want to determine which
one of the Fj also occurred, we can write the following:

P(Fj |E ) =
P(EFj)

P(E )

=
P(E |Fj)P(Fj)∑n
i=1 P(E |Fi )P(Fi )

which is known as the Bayes’ formula.

Example 1.15

We know that a certain letter is equally likely to be in any one of
the 3 folders. Let αi be the probability that we will find the letter
in folder i if the letter is, in fact, in folder i , i = 1, 2, 3. Suppose
that we look for folder 1 and do not find the letter. What is the
probability that the latter is there?

We let Fi and E be the events that the letter is in folder i and that
we cannot find the letter, respectively.



Example 1.15 (cont.)

The desired probability is

P(F1|E ) =
P(E |F1P(F1)∑3
i=1 P(E |Fi )P(Fi )

=
(1− α1)13

(1− α1)13 + 1
3 + 1

3

=
1− α1

3− α1

The End
Questions?


