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Example 

Example: For a price of $1/gallon, the Safeco Supermarket chain has 

purchased 6 gallons of milk from a local dairy. Each gallon of milk is sold in the 

chain’s three stores for $2/gallon. The dairy must buy back for 50¢/gallon any 

milk that is left at the end of the day. Unfortunately for Safeco, demand for 

each of the chain’s three stores is uncertain. Past data indicate that the daily 

demand at each store is as shown in the below table. Safeco wants to allocate 

the 6 gallons of milk to the three stores so as to maximize the expected net 

daily profit (revenues less costs) earned from milk. Use dynamic programming 

to determine how Safeco should allocate the 6 gallons of milk among the three 

stores. 
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Example 

 Daily Demand Probability 

Store 1 1 .6 
 2 .0 
 3 .4 

Store 2 1 .5 
 2 .1 
 3 .4 

Store 3 1 .4 
 2 .3 
 3 .3 

Table: Problem Data 
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Example 

𝑟𝑡 𝑔𝑡 = expected revenue earned from 𝑔𝑡  gallons assigned to store 𝑡 

𝑓𝑡 𝑥 = maximum expected revenue earned from 𝑥 gallons assigned to stores 

𝑡, 𝑡 + 1,… ,3 

We have, 

𝑓3 𝑥 = 𝑟3(𝑥) 

𝑓𝑡 𝑥 = max
𝑔𝑡

 𝑟𝑡 𝑔𝑡 + 𝑓𝑡+1(𝑥 − 𝑔𝑡) , 𝑡 = 1,2 

𝑟3 0 = $0 𝑟3 1 = $2.00 𝑟3 2 = $3.40 𝑟3 3 = $4.35 

𝑟2 0 = $0 𝑟2 1 = $2.00 𝑟2 2 = $3.25 𝑟2 3 = $4.35 

𝑟1 0 = $0 𝑟1 1 = $2.00 𝑟1 2 = $3.10 𝑟1 3 = $4.20 

fatihcavdur@uludag.edu.tr 



Example 

Stage 3 Computations: 

𝑓3 0 = 𝑟3 0 = 0.00 ⇒ 𝑔3 0 = 0 

𝑓3 1 = 𝑟3 1 = 2.00 ⇒ 𝑔3 1 = 1 

𝑓3 2 = 𝑟3 2 = 3.40 ⇒ 𝑔3 2 = 2 

𝑓3 3 = 𝑟3 3 = 4.35 ⇒ 𝑔3 3 = 3 
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Example 

𝑓2 0 = 𝑟2 0 + 𝑓3 0 − 0 = 0.00 ⇒ 𝑔2 0 = 0 

𝑓2 1 = max  
𝑟2 0 + 𝑓3 1 − 0 = 2.00

𝑟2 1 + 𝑓3 1 − 1 = 2.00
 ⇒ 𝑔2 1 = 0 ∨ 1 

𝑓2 2 = max 

𝑟2 0 + 𝑓3 2 − 0 = 0.00 + 3.40 = 3.40

𝑟2 1 + 𝑓3 2 − 1 = 2.00 + 2.00 = 4.00

𝑟2 2 + 𝑓3 2 − 2 = 3.25 + 0.00 = 3.25

 ⇒ 𝑔2 2 = 1 

𝑓2 3 = max

 
 

 
𝑟2 0 + 𝑓3 3 − 0 = 0.00 + 4.35 = 4.35

𝑟2 1 + 𝑓3 3 − 1 = 2.00 + 3.40 = 5.40

𝑟2 2 + 𝑓3 3 − 2 = 3.25 + 2.00 = 5.25

𝑟2 3 + 𝑓3 3 − 3 = 4.35 + 0.00 = 4.35 
 

 
⇒ 𝑔2 3 = 1 
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Example 

𝑓2 4 = max 

𝑟2 1 + 𝑓3 4 − 1 = 2.00 + 4.35 = 6.35

𝑟2 2 + 𝑓3 4 − 2 = 3.25 + 3.40 = 6.65

𝑟2 3 + 𝑓3 4 − 3 = 4.35 + 2.00 = 6.35

 ⇒ 𝑔2 4 = 2 

𝑓2 5 = max  
𝑟2 2 + 𝑓3 5 − 2 = 3.25 + 4.35 = 7.60

𝑟2 3 + 𝑓3 5 − 3 = 4.35 + 3.40 = 7.75
 ⇒ 𝑔2 5 = 3 

𝑓2 6 = 𝑟2 3 + 𝑓3 6 − 3 = 4.35 + 4.35 = 8.70 ⇒ 𝑔2 6 = 3 
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Example 

Stage 1 Computations: 

𝑓1 6 = max

 
 

 
𝑟1 0 + 𝑓2 6 − 0 = 0.0 + 8.70 = 8.70

𝑟1 1 + 𝑓2 6 − 1 = 2.0 + 7.75 = 9.75

𝑟1 2 + 𝑓2 6 − 2 = 3.1 + 6.65 = 9.75

𝑟1 3 + 𝑓2 6 − 3 = 4.2 + 5.40 = 9.60 
 

 
⇒ 𝑔1 6 = 1 ∨ 2 

fatihcavdur@uludag.edu.tr 



A Stochastic Inventory Model 

Consider the following three-period inventory problem. At the beginning of 

each period, a firm must determine how many units should be produced 

during the current period. During a period in which 𝑥 units are produced, a 

production cost 𝑐(𝑥) is incurred, where 𝑐 0 = 0, and for 𝑥 > 0, 𝑐 𝑥 = 3 +

2𝑥. Production during each period is limited to at most 4 units. After 

production occurs, the period’s random demand is observed. Each period’s 

demand is equally likely to be 1 or 2 units. After meeting the current period’s 

demand out of current production and inventory, the firm’s end-of-period 

inventory is evaluated, and a holding cost of $1 per unit is assessed. Because 

of limited capacity, the inventory at the end of each period cannot exceed 3 

units. It is required that all demand be met on time. Any inventory on hand at 

the end of period 3 can be sold at $2 per unit. At the beginning of period 1, the 

firm has 1 unit of inventory. Use dynamic programming to determine a 

production policy that minimizes the expected net cost incurred during the 

three periods. 
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A Stochastic Inventory Model 

We have, for 𝑡 = 3, 

𝑓3 𝑖 = min
𝑥

 𝑐 𝑥 +
 𝑖 + 𝑥 − 1 

2
+
 𝑖 + 𝑥 − 2 

2
−
 2  𝑖 + 𝑥 − 1 

2
−
 2  𝑖 + 𝑥 − 2 

2
  

and, for 𝑡 = 2,1, 

𝑓𝑡 𝑖 = min
𝑥

 𝑐 𝑥 +
 𝑖 + 𝑥 − 1 

2
+
 𝑖 + 𝑥 − 2 

2
+
𝑓𝑡+1 𝑖 + 𝑥 − 1 

2
+
𝑓𝑡+1 𝑖 + 𝑥 − 2 

2
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A Stochastic Inventory Model 

Stage 3 Computations: 

𝑓3 𝑖 = min
𝑥

 𝑐 𝑥 +
 𝑖 + 𝑥 − 1 

2
+
 𝑖 + 𝑥 − 2 

2
−
 2  𝑖 + 𝑥 − 1 

2
−
 2  𝑖 + 𝑥 − 2 

2
  

𝑖 𝑥 𝑐 𝑥  

Expected 
Holding Cost 

𝑖 + 𝑥 −
3

2
 

Expected 
Salvage Value 
2𝑖 + 2𝑥 − 3 

Expected 
Total 
Cost 

𝑓3 𝑖 ; 𝑥3 𝑖  

3 0 0 3/2 3 -3/2 𝑓3 3 = −3/2; 𝑥3 0 = 0 
3 1 5 5/2 5 5/2  

2 0 0 1/2 1 -1/2 𝑓3 2 = −1/2; 𝑥3 0 = 0 
2 1 5 3/2 3 7/2  
2 2 7 5/2 5 9/2  

1 1 5 1/2 1 9/2 𝑓3 1 = 9/2; 𝑥3 0 = 1 
1 2 7 3/2 3 11/2  
1 3 9 5/2 5 13/2  

0 2 7 1/2 1 13/2 𝑓3 0 = 13/2;𝑥3 0 = 2 
0 3 9 3/2 3 15/2  
0 4 11 5/2 5 17/2  
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A Stochastic Inventory Model 

Stage 2 Computations: 

𝑓2 𝑖 = min
𝑥

 𝑐 𝑥 +
 𝑖 + 𝑥 − 1 

2
+
 𝑖 + 𝑥 − 2 

2
+
𝑓3 𝑖 + 𝑥 − 1 

2
+
𝑓3 𝑖 + 𝑥 − 2 

2
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A Stochastic Inventory Model 

𝑖 𝑥 𝑐 𝑥  

Expected 
Holding 

Cost 

𝑖 + 𝑥 −
3

2
 

Expected 
Future Cost 

𝑓3 𝑖 + 𝑥 − 1 

2
+
𝑓3 𝑖 + 𝑥 − 2 

2
 

Expected 
Total 
Cost 

𝑓2 𝑖 ; 𝑥2 𝑖  

3 0 0 3/2 2 7/2 
𝑓2 3 =

7

2
 

𝑥2 3 = 0 
3 1 5 5/2 -1 13/2  

2 0 0 1/2 11/2 6 
𝑓2 2 = 6 
𝑥2 2 = 0 

2 1 5 3/2 2 17/2  
2 2 7 5/2 -1 17/2  

… … … … … … … 

0 2 7 1/2 11/2 13  

0 3 9 3/2 2 25/2 𝑓2 0 =
25

2
 

𝑥2 0 = 3 

0 4 11 5/2 -1 25/2 𝑓2 0 =
25

2
 

𝑥2 0 = 4 
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A Stochastic Inventory Model 

Stage 1 Computations: 

𝑓1 𝑖 = min
𝑥

 𝑐 𝑥 +
 𝑖 + 𝑥 − 1 

2
+
 𝑖 + 𝑥 − 2 

2
+
𝑓2 𝑖 + 𝑥 − 1 

2
+
𝑓2 𝑖 + 𝑥 − 2 

2
  

𝑖 𝑥 𝑐 𝑥  

Expected 
Holding Cost 

𝑖 + 𝑥 −
3

2
 

Expected 
Future Cost 

𝑓2 𝑖 + 𝑥 − 1 

2
+
𝑓2 𝑖 + 𝑥 − 2 

2
 

Expected 
Total Cost 

𝑓1 𝑖 ; 𝑥1 𝑖  

1 1 7 1/2 23/2 17  
1 2 9 3/2 33/4 67/4  

1 3 11 5/2 19/4 65/4 𝑓1 1 =
65

4
 

𝑥1 1 = 3 
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Gambler’s Problem 

A gambler has $2. She is allowed to play a game of chance four times, and her 

goal is to maximize her probability of ending up with a least $6. If the gambler 

bets 𝑏 dollars on a play of the game, then with probability .40, she wins the 

game and increases her capital position by 𝑏 dollars; with probability .60, she 

loses the game and decreases her capital by 𝑏 dollars. On any play of the 

game, the gambler may not bet more money than she has available. 

Determine a betting strategy that will maximize the gambler’s probability of 

attaining a wealth of at least $6 by the end of the fourth game. We assume 

that bets of zero dollars (that is, not betting) are permissible. 
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Gambler’s Problem 

We let 𝑓𝑡 𝑑  be the probability that the gambler will have at least $6 by the 

end of given that she has 𝑑 dollars immediately before the game is played for 

the 𝑡th time and given that she acts optimally. 

If the gambler playing the game for the 4th and final time, her optimal strategy 

is clear: 

 If she has $6 or more, don’t bet anything. 

 If she has less than $6, bet enough money to ensure (if possible) that 

she will have $6 if she wins the last game. 
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Gambler’s Problem 

We hence have the following: 

𝑓4 0 = .0 ⇒ 𝑏4 0 = $0 

𝑓4 1 = .0 ⇒ 𝑏4 1 = $0, $1 

𝑓4 2 = .0 ⇒ 𝑏4 2 = $0, $1, $2 

𝑓4 3 = .4 ⇒ 𝑏4 3 = $3 

𝑓4 4 = .4 ⇒ 𝑏4 4 = $2, $3, $4 

𝑓4 5 = .4 ⇒ 𝑏4 5 = $1, $2, $3, $4, $5 

For 𝑑 ≥ 6, 

𝑓4 𝑑 = 1 ⇒ 𝑏4 𝑑 = $0, $1,… , $ 𝑑 − 6  

We can write, 

𝑓𝑡 𝑑 = max
𝑏∈ 0,…𝑑 

 . 4𝑓𝑡+1 𝑑 + 𝑏 + .6𝑓𝑡+1 𝑑 − 𝑏   
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Gambler’s Problem 

Stage 3 Computations: 

𝑓3 0 = 0 ⇒ 𝑏3 0 = 0 

𝑓3 1 = max
𝑏

 
. 4𝑓4 1 + .6𝑓4 1 = 0

. 4𝑓4 2 + .6𝑓4 0 = 0
 ⇒ 𝑏3 1 = 0 ∨ 1 

𝑓3 2 = max
𝑏

 

. 4𝑓4 2 + .6𝑓4 2 = .00

. 4𝑓4 3 + .6𝑓4 1 = .16

. 4𝑓4 4 + .6𝑓4 0 = .16

 ⇒ 𝑏3 2 = 1 ∨ 2 

If we continue similarly, 

𝑓3 5 = max
𝑏

 
  
 

  
 

. 4𝑓4 5 + .6𝑓4 5 = .40

. 4𝑓4 6 + .6𝑓4 4 = .64

. 4𝑓4 7 + .6𝑓4 3 = .64

. 4𝑓4 8 + .6𝑓4 2 = .40

. 4𝑓4 1 + .6𝑓4 9 = .40

. 4𝑓4 10 + .6𝑓4 0 = .40 
  
 

  
 

⇒ 𝑏3 5 = 1 ∨ 2 
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Gambler’s Problem 

Stage 2 Computations: 

𝑓2 0 = 0 ⇒ 𝑏2 0 = 0 

𝑓2 1 = max
𝑏

 
. 4𝑓3 1 + .6𝑓3 1 = .000

. 4𝑓3 2 + .6𝑓3 0 = .064
 ⇒ 𝑏2 1 = 1 

𝑓2 2 = max
𝑏

 

. 4𝑓3 2 + .6𝑓3 2 = .16

. 4𝑓3 3 + .6𝑓3 1 = .16

. 4𝑓3 4 + .6𝑓3 0 = .16

 ⇒ 𝑏2 2 = 1 ∨ 2 ∨ 3 

If we continue similarly, 

𝑓2 5 = max
𝑏

 
  
 

  
 

. 4𝑓3 5 + .6𝑓3 5 = .640

. 4𝑓3 6 + .6𝑓3 4 = .640

. 4𝑓3 7 + .6𝑓3 3 = .640

. 4𝑓3 8 + .6𝑓3 2 = .496

. 4𝑓3 1 + .6𝑓3 9 = .400

. 4𝑓3 10 + .6𝑓3 0 = .400 
  
 

  
 

⇒ 𝑏3 5 = 0 ∨ 1 ∨ 2 
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Gambler’s Problem 

Stage 1 Computations: 

𝑓1 2 = max
𝑏

 

. 4𝑓2 2 + .6𝑓2 2 = .1600

. 4𝑓2 3 + .6𝑓2 1 = .1984

. 4𝑓2 4 + .6𝑓2 0 = .1984
 ⇒ 𝑏2 2 = 1 ∨ 2 

 

Hence, the gambler has a chance of .1984 reaching $6. 
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Gambler’s Problem 
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Tennis Player 

A tennis player has two types of serves, a hard (H) and a soft (S) one. The 

probability that her hard serve will land in bounds is 𝑝𝐻  and the probability 

that her soft serve will land in bounds is 𝑝𝑆. If her hard serve lands in bounds, 

there is a probability 𝑤𝐻 that she will win the point. If her soft serve lands in 

bounds, there is a probability 𝑤𝑠 that she will win the point. We assume that 

𝑝𝐻 < 𝑝𝑆  and 𝑤𝐻 > 𝑤𝑆. Her goal is to maximize the probability of winning the 

point. Use DP to help her!  
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Tennis Player 

We let 𝑓𝑡  be the probability that she wins the point if she is about to take her 

𝑡th service, 𝑡 = 1,2. 

𝑓2 = max
𝑥

 
𝑝𝐻𝑤𝐻

𝑝𝑆𝑤𝑆
 = 𝑝𝑆𝑤𝑆 ⇒ 𝑥2 = 𝑆 

𝑓1 = max
𝑥

 
𝑝𝐻𝑤𝐻 +  1 − 𝑝𝐻 𝑓2

𝑝𝑆𝑤𝑆 +  1 − 𝑝𝑆 𝑓2
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Tennis Player 

If we assume, 𝑝𝑆𝑤𝑆 > 𝑝𝐻𝑤𝐻, 

⇒ 𝑝𝐻𝑤𝐻 +  1 − 𝑝𝐻 𝑓2 ≥ 𝑝𝑆𝑤𝑆 +  1 − 𝑝𝑆 𝑓2 

⇒ 𝑝𝐻𝑤𝐻 +  1 − 𝑝𝐻 𝑝𝑆𝑤𝑆 ≥ 𝑝𝑆𝑤𝑆 +  1 − 𝑝𝑆 𝑝𝑆𝑤𝑆 

⇒ 𝑝𝐻𝑤𝐻 ≥ 𝑝𝑆𝑤𝑆 +  1 + 𝑝𝐻 − 𝑝𝑆  

We now assume, 𝑝𝑆𝑤𝑆 ≤ 𝑝𝐻𝑤𝐻, where she should serve hard on both. We 

then have  

𝑓2 = max
𝑥

 
𝑝𝐻𝑤𝐻

𝑝𝑆𝑤𝑆
 = 𝑝𝐻𝑤𝐻 ⇒ 𝑥2 = 𝐻 

She should serve hard on the first if 

⇒ 𝑝𝐻𝑤𝐻 +  1 − 𝑝𝐻 𝑓2 ≥ 𝑝𝑆𝑤𝑆 +  1 − 𝑝𝑆 𝑓2 

⇒ 𝑝𝐻𝑤𝐻 +  1 − 𝑝𝐻 𝑝𝐻𝑤𝐻 ≥ 𝑝𝑆𝑤𝑆 +  1 − 𝑝𝑆 𝑝𝐻𝑤𝐻  

⇒ 𝑝𝑆𝑤𝑆 ≤ 𝑝𝐻𝑤𝐻 +  1 + 𝑝𝑆 − 𝑝𝐻  
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Markov Decision Processes (MDP) 

An MDP is described by the following information: 

 State Space 

 Decision Set 

 Transition Probabilities 

 Expected Rewards 
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Markov Decision Processes (MDP) 

At the beginning of each week, a machine is in one of four conditions (states): 

excellent (E), good (G), average (A), or bad (B). The weekly revenue earned by 

a machine in each type of condition is as follows: excellent, $100; good, $80; 

average, $50; bad, $10. After observing the condition of a machine at the 

beginning of the week, we have the option of instantaneously replacing it with 

an excellent machine, which costs $200. The quality of a machine deteriorates 

over time, as given in the following matrix. For this situation, determine the 

state space, decision sets, transition probabilities, and expected rewards. 
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Markov Decision Processes (MDP) 
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𝐏 =

𝐸 𝐺 𝐴 𝐵
𝐸
𝐺
𝐴
𝐵

 

. 7 . 3 . 0 0.0

. 0 . 7 . 3 0.0

. 0 . 0 . 6 0.4

. 0 . 0 . 0 1.0

 
 

State Set: 𝑆 =  𝐸,𝐺,𝐴,𝐵  

Decision Set: 𝑅 =  𝑅,𝐾 , replace and do not replace (keep) 

We have 

𝐷 𝐸 =  𝐾  and 𝐷 𝐺 = 𝐷 𝐴 = 𝐷 𝐵 =  𝑅,𝐾  

We are given the following transition probabilities: 

𝑝 𝐸|𝐸,𝐾 = .7 𝑝 𝐺|𝐸,𝐾 = .3 … 𝑝 𝐵|𝐸,𝐾 = 0.0
⋮ ⋮ ⋱ ⋮

𝑝 𝐸|𝐵,𝐾 = .0 𝑝 𝐺|𝐵,𝐾 = .0 … 𝑝 𝐵|𝐵,𝐾 = 1.0
 



Markov Decision Processes (MDP) 

If we replace a machine with an excellent machine, the transition probabilities 

will be the same as if we had begun the week with an excellent machine. 

𝑝 𝐸|𝐺,𝑅 = 𝑝 𝐸|𝐴,𝑅 = 𝑝 𝐸|𝐵,𝑅 = .7 

𝑝 𝐺|𝐺,𝑅 = 𝑝 𝐺|𝐴,𝑅 = 𝑝 𝐺|𝐵,𝑅 = .3 

𝑝 𝐴|𝐺,𝑅 = 𝑝 𝐴|𝐴,𝑅 = 𝑝 𝐴|𝐵,𝑅 = .0 

𝑝 𝐵|𝐺,𝑅 = 𝑝 𝐵|𝐴,𝑅 = 𝑝 𝐵|𝐵,𝑅 = .0 
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Markov Decision Processes (MDP) 

If the machine is not replaced, then, during the week, we receive the revenues 

given in the problem. 

𝑟𝐸,𝐾 = $100, 𝑟𝐺,𝐾 = $80, 𝑟𝐴,𝐾 = $50, 𝑟𝐵,𝐾 = $10 

If we replace the machine, 

𝑟𝐸,𝑅 = 𝑟𝐺,𝑅 = 𝑟𝐴,𝑅 = 𝑟𝐵,𝑅 = −$100 
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Markov Decision Processes (MDP) 

Definition: 
 
A policy is a rule that specifies how each period’s decision is chosen. 
 
 

Definition: 
 
A policy 𝛿 is a stationary policy if whenever the state 𝑖, the policy 𝛿 
chooses (independently of the period) the same decision 𝛿 𝑖 . 
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Markov Decision Processes (MDP) 

𝛿: an arbitrary policy 

Δ: the set of all policies 

𝑋𝑡 : random variable for the state of MDP at the beginning of period 𝑡 

𝑋1: given state of the process at the beginning of period 1 (initial state) 

𝑑𝑡 : decision chosen during period 𝑡 

𝑉𝛿 𝑖 : expected discounted reward earned during an infinite number of 

periods, given that at the beginning of period 1, state is 𝑖 and stationary policy 

𝛿 is followed. 
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Markov Decision Processes (MDP) 

We can then write, 

𝑉𝛿 𝑖 = 𝐸𝛿   𝛽𝑡−1𝑟𝑥𝑡𝑑𝑡 |𝑋1 = 𝑖

∞

𝑡=1

  

In a max problem, 

𝑉 𝑖 = max
𝛿∈Δ

𝑉𝛿 𝑖  

In a min problem, 

𝑉 𝑖 = min
𝛿∈Δ

𝑉𝛿 𝑖  
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Markov Decision Processes (MDP) 

Definition: 
 
If a policy 𝛿∗ has the property that for all 𝑖 ∈ 𝑆 
 

𝑉 𝑖 = 𝑉𝛿∗ 𝑖  
 
then, 𝛿∗ is an optimal policy. 
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Markov Decision Processes (MDP) 

We can use the following approaches to find the optimal stationary policy: 

 Policy Iteration 

 Linear Programming 

 Value Iteration or Successive Approximations 
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Policy Iteration 
𝑉𝛿 𝑖  can be found by solving the following system of linear equations: 

𝑉𝛿 𝑖 = 𝑟𝑖,𝛿 𝑖 + 𝛽 𝑝 𝑗|𝑖, 𝛿 𝑖  𝑉𝛿 𝑗 

𝑁

𝑗=1

, 𝑖 = 1,… ,𝑁 

Consider the following stationary policy in the machine replacement example: 

𝛿 𝐸 = 𝛿 𝐺 = 𝐾;𝛿 𝐴 = 𝛿 𝐵 = 𝑅 

We then have, 

𝑉𝛿 𝐸 = 100 + .9 . 7𝑉𝛿 𝐸 + .3𝑉𝛿 𝐺   

𝑉𝛿 𝐺 = 80 + .9 . 7𝑉𝛿 𝐺 + .3𝑉𝛿 𝐴   

𝑉𝛿 𝐴 = −100 + .9 . 7𝑉𝛿 𝐸 + .3𝑉𝛿 𝐺   

𝑉𝛿 𝐵 = −100 + .9 . 7𝑉𝛿 𝐸 + .3𝑉𝛿 𝐺   

By solving these, 

𝑉𝛿 𝐸 = 687.81, 𝑉𝛿 𝐺 = 573.19, 𝑉𝛿 𝐴 = 487.81, and 𝑉𝛿 𝐵 = 487.81 
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Howard’s Policy Iteration 

Step 1) Policy Evaluation: Choose a stationary policy 𝛿 and use the equations 

to find 𝑉𝛿 𝑖 , 𝑖 = 1,… ,𝑁 

Step 2) Policy Improvement: For all states 𝑖 = 1,… ,𝑁, compute 

𝑇𝛿 𝑖 = max
𝑑∈𝐷 𝑖 

 𝑟𝑖,𝑑 + 𝛽 𝑝 𝑗|𝑖,𝑑 𝑉𝛿 𝑗 

𝑁

𝑗=1

  

If 𝑇𝛿 𝑖 = 𝑉𝛿 𝑖 ,∀𝑖 ⇒ 𝛿 is an optimal policy. 

If 𝑇𝛿 𝑖 > 𝑉𝛿 𝑖 ,∃𝑖 ⇒ 𝛿 is not an optimal policy. 

Modify 𝛿 to obtain 𝛿′ for which 𝑉𝛿′ 𝑖 ≥ 𝑉𝛿 𝑖 ,∀𝑖. 

Return to Step (1) with policy 𝛿′. 
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Howard’s Policy Iteration 

Machine Replacement Example: 

Consider the following stationary policy:  

𝛿 𝐸 = 𝛿 𝐺 = 𝐾 and 𝛿 𝐴 = 𝛿 𝐵 = 𝑅 

We have found that 

𝑉𝛿 𝐸 = 687.81, 𝑉𝛿 𝐺 = 573.19, 𝑉𝛿 𝐴 = 487.81, and 𝑉𝛿 𝐵 = 487.81 
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Howard’s Policy Iteration 

Now, 

𝑇𝛿 𝐸 = 𝑉𝛿 𝐸 = 687.81 

𝑇𝛿 𝐺 = max  
−100 + .9 . 7𝑉𝛿 𝐸 + .3𝑉𝛿 𝐺  = 487.81

80 + .9 . 7𝑉𝛿 𝐺 + .3𝑉𝛿 𝐴  = 𝑉𝛿 𝐺 = 572.19
  

= 572.19 ⇒ 𝛿 𝐺 = 𝐾 

𝑇𝛿 𝐴 = max  
−100 + .9 . 7𝑉𝛿 𝐸 + .3𝑉𝛿 𝐺  = 487.81

50 + .9 . 6𝑉𝛿 𝐴 + .4𝑉𝛿 𝐵  = 489.03
  

= 489.03 ⇒ 𝛿 𝐴 = 𝐾 

𝑇𝛿 𝐵 = max  
−100 + .9 . 7𝑉𝛿 𝐸 + .3𝑉𝛿 𝐺  = 𝑉𝛿 𝐵 = 487.81

10 + .9𝑉𝛿 𝐵 = 449.03
  

= 487.81 ⇒ 𝛿 𝐺 = 𝑅 

fatihcavdur@uludag.edu.tr 



Howard’s Policy Iteration 

Since 𝑇𝛿 𝑖 > 𝑉𝛿 𝑖 , for 𝑖 = 𝐴, the policy 𝛿 is not optimal. So replace it with 𝛿′ 

given as 

𝛿′ 𝐸 = 𝛿′ 𝐺 = 𝛿′ 𝐴 = 𝐾 and 𝛿′ 𝐵 = 𝑅 

We now return to Step (1) and compute 𝑉𝛿′ 𝐸 = 690.23, 𝑉𝛿′ 𝐺 = 575.50, 

𝑉𝛿′ 𝐴 = 492.35, and 𝑉𝛿′ 𝐵 = 490.23 by solving the following system. Note 

that 𝑉𝛿′ 𝑖 > 𝑉𝛿 𝑖 ,∀𝑖. 

𝑉𝛿′ 𝐸 = 100 + .9 . 7𝑉𝛿′ 𝐸 + .3𝑉𝛿′ 𝐺   

𝑉𝛿′ 𝐺 = 80 + .9 . 7𝑉𝛿′ 𝐺 + .3𝑉𝛿′ 𝐴   

𝑉𝛿′ 𝐴 = 50 + .9 . 6𝑉𝛿′ 𝐴 + .4𝑉𝛿′ 𝐺   

𝑉𝛿′ 𝐵 = −100 + .9 . 7𝑉𝛿′ 𝐸 + .3𝑉𝛿′ 𝐺   
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Howard’s Policy Iteration 

Now apply the policy iteration procedure as follows: 

𝑇𝛿′ 𝐸 = 𝑉𝛿′ 𝐸 = 690.23 

𝑇𝛿′ 𝐺 = max  
−100 + .9 . 7𝑉𝛿′ 𝐸 + .3𝑉𝛿′ 𝐺  = 490.23

80 + .9 . 7𝑉𝛿′ 𝐺 + .3𝑉𝛿′ 𝐴  = 𝑉𝛿′ 𝐺 = 575.50
  

= 575.50 ⇒ 𝛿′ 𝐺 = 𝐾 

𝑇𝛿′ 𝐴 = max  
−100 + .9 . 7𝑉𝛿′ 𝐸 + .3𝑉𝛿′ 𝐺  = 490.23

50 + .9 . 6𝑉𝛿 𝐴 + .4𝑉𝛿 𝐵  = 492.35
  

= 492.35 ⇒ 𝛿 𝐴 = 𝐾 

𝑇𝛿′ 𝐵 = max  
−100 + .9 . 7𝑉𝛿 ′  𝐸 + .3𝑉𝛿 ′  𝐺  = 𝑉𝛿′ 𝐵 = 490.23

10 + .9𝑉𝛿′ 𝐵 = 451.21
  

= 490.23 ⇒ 𝛿 𝐺 = 𝑅 

Since 𝑇𝛿′ 𝑖 = 𝑉𝛿′ 𝑖 ,∀𝑖, the policy 𝛿′ is an optimal stationary policy. 
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Linear Programming 

It can be shown that an optimal stationary policy for a maximization problem 

can be found by solving the following LP: 

min 𝑉𝑗

𝑁

𝑗=1

 

𝑉𝑖 − 𝛽 𝑝 𝑗|𝑖,𝑑 𝑉𝑗

𝑁

𝑗=1

≥ 𝑟𝑖𝑑 , ∀𝑖, ∀𝑑 ∈ 𝑑 𝑖  

For a minimization problem can be found by solving the following LP: 

max 𝑉𝑗

𝑁

𝑗=1

 

𝑉𝑖 − 𝛽 𝑝 𝑗|𝑖,𝑑 𝑉𝑗

𝑁

𝑗=1

≤ 𝑟𝑖𝑑 , ∀𝑖, ∀𝑑 ∈ 𝑑 𝑖  
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Linear Programming 

min𝑉𝐸 + 𝑉𝐺 + 𝑉𝐴 + 𝑉𝐵  

𝑉𝐸 ≥ 100 + .9 . 7𝑉𝐸 + .3𝑉𝐺   (K in E) 

𝑉𝐺 ≥ 80 + .9 . 7𝑉𝐺 + .3𝑉𝐴   (K in G) 

𝑉𝐺 ≥ −100 + .9 . 7𝑉𝐸 + .3𝑉𝐺   (R in G) 

𝑉𝐴 ≥ 50 + .9 . 6𝑉𝐴 + .4𝑉𝐵   (K in A) 

𝑉𝐴 ≥ −100 + .9 . 7𝑉𝐸 + .3𝑉𝐺   (R in A) 

𝑉𝐵 ≥ 10 + .9𝑉𝐵    (K in B) 

𝑉𝐵 ≥ −100 + .9 . 7𝑉𝐸 + .3𝑉𝐺   (R in B) 

By solving the LP, we obtain 𝑉𝐸 = 690.23, 𝑉𝐺 = 575.50, 𝑉𝐴 = 492.35 and 

𝑉𝐵 = 490.23. 

Note that 1st, 2nd, 4th and 7th constraints are binding. 
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Value Iteration 

𝑉𝑡 𝑖 = max
𝑑∈𝐷 𝑖 

 𝑟𝑖,𝑑 + 𝛽 𝑝 𝑗|𝑖,𝑑 𝑉𝑡−1 𝑗 

𝑁

𝑗=1

 , 𝑡 ≥ 1 

𝑉0 𝑖 = 0 

Let 𝑑𝑡 𝑖  be the decision that must be chosen during period 1 in state 𝑖 to 

attain 𝑉𝑡 𝑖 . For an MDP with finite state space and each 𝐷 𝑖  containing a 

finite number of elements, we have, 

 𝑉𝑡 𝑖 − 𝑉 𝑖  ≤
𝛽𝑡

1 − 𝛽
max
𝑖 ,𝑑

 𝑟𝑖𝑑  , 𝑖 = 1,… ,𝑁 

For an optimal stationary policy 𝛿∗ 𝑖 , we have 

lim
𝑡→∞

𝑑𝑡 𝑖 = 𝛿∗ 𝑖  
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Value Iteration 
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Stage 1: 

𝑉1 𝐸 = 100 (𝐾) 

𝑉1 𝐺 = max  
80 (𝐾)

−100 (𝑅)
 = 80 

𝑉1 𝐴 = max  
50 (𝐾)

−100 (𝑅)
 = 50 

𝑉1 𝐵 = max  
10 (𝐾)

−100 (𝑅)
 = 10 



Value Iteration 
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Stage 2: 

𝑉2 𝐸 = 100 + .9 . 7𝑉1 𝐸 + .3𝑉1 𝐺  = 184.6 (𝐾) 

𝑉2 𝐺 = max  
80 + .9 . 7𝑉1 𝐺 + .3𝑉1 𝐴  = 143.9 (𝐾)

−100 + .9 . 7𝑉1 𝐸 + .3𝑉1 𝐺  = −15.4 (𝑅)
 = 143.9 

𝑉2 𝐴 = max  
50 + .9 . 6𝑉1 𝐴 + .4𝑉1 𝐵  = 80.6 (𝐾)

−100 + .9 . 7𝑉1 𝐸 + .3𝑉1 𝐺  = −15.4 (𝑅)
 = 80.6 

𝑉2 𝐵 = max  
10 + .9𝑉1 𝐵 = 19 (𝐾)

−100 + .9 . 7𝑉1 𝐸 + .3𝑉1 𝐺  = −15.4 (𝑅)
 = 19 



Value Iteration 

Observe that after two iterations of successive approximations, we have not 

yet come close to the actual values of 𝑉 𝑖  and have not found it optimal to 

replace even a bad machine. In general, if we want to ensure that all the 𝑉𝑡 𝑖  

are within 𝜖 of the corresponding 𝑉 𝑖 , we would perform 𝑡∗ iterations of 

successive iterations where 

𝛽𝑡
∗

1 − 𝛽
max
𝑖 ,𝑑

 𝑟𝑖𝑑  < 𝜖 
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Maximizing Average Reward 

max  𝜋𝑖𝑑𝑟𝑖𝑑
𝑑∈𝐷 𝑖 

𝑁

𝑖=1

 

  𝜋𝑖𝑑
𝑑∈𝐷 𝑖 

𝑁

𝑖=1

= 1 

 𝜋𝑗𝑑
𝑑∈𝐷 𝑗  

=   𝜋𝑖𝑑𝑝 𝑗|𝑖,𝑑 

𝑁

𝑖=1𝑑∈𝐷 𝑖 

, ∀𝑗 

𝜋𝑖𝑑 ≥ 0, ∀𝑖,𝑑 
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Machine Replacement 

max 100𝜋𝐸𝐾 + 80𝜋𝐺𝐾 + 50𝜋𝐴𝐾 + 10𝜋𝐵𝐾 − 100 𝜋𝐺𝑅 + 𝜋𝐴𝑅 + 𝜋𝐵𝑅  

𝜋𝐸𝐾 + 𝜋𝐺𝐾 + 𝜋𝐴𝐾 + 𝜋𝐵𝐾 + 𝜋𝐺𝑅 + 𝜋𝐴𝑅 + 𝜋𝐵𝑅 = 1 

𝜋𝐸𝐾 = .7 𝜋𝐸𝐾 + 𝜋𝐺𝑅 + 𝜋𝐴𝑅 + 𝜋𝐵𝑅  

𝜋𝐺𝐾 + 𝜋𝐺𝑅 = .3 𝜋𝐺𝑅 + 𝜋𝐴𝑅 + 𝜋𝐵𝑅 + 𝜋𝐸𝐾 + .7𝜋𝐺𝐾  

𝜋𝐴𝑅 + 𝜋𝐴𝐾 = .3𝜋𝐺𝐾 + .6𝜋𝐴𝐾  

𝜋𝐵𝑅 + 𝜋𝐵𝐾 = 𝜋𝐵𝐾 + .4𝜋𝐴𝐾  

By solving, we obtain 𝑧 = 60 and 𝜋𝐸𝐾 = .35, 𝜋𝐺𝐾 = .50, 𝜋𝐴𝑅 = .15. 
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The End 
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