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Differential Calculus 

Limit 
lim
𝑥→𝑎

𝑓 𝑥 = 𝑐 

 

Continuity 
A function 𝑓 𝑥  is continuous at point 𝑎 if 

lim
𝑥→𝑎

𝑓 𝑥 = 𝑓 𝑎  
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Differential Calculus 

Differentiation 
The derivative of a function 𝑓 𝑥  at 𝑥 = 𝑎 is defined as 

𝑓 ′ 𝑎 = lim
∆𝑥→0

𝑓 𝑥 − 𝑓 𝑎 

Δ𝑥
 

 

If 𝑓 ′ 𝑎 > 0, then, 𝑓 𝑥  is increasing at 𝑥 = 𝑎. 

If 𝑓 ′ 𝑎 < 0, then, 𝑓 𝑥  is decreasing at 𝑥 = 𝑎. 
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Differential Calculus 

Taylor Series Expansion 
The 𝑛th order Taylor series expansion of a function of 𝑓 𝑥  about 𝑎 

(given that 𝑓 𝑛+1  𝑥  exists for all points on the interval  𝑎, 𝑏 ), for any 

ℎ such that 0 ≤ ℎ ≤ 𝑏 − 𝑎, is defined as follows where it holds for some 

number 𝑝 between 𝑎 and 𝑎 + ℎ: 

𝑓 𝑎 + ℎ = 𝑓 𝑎 +  
𝑓 𝑖  𝑎 

𝑖!
ℎ𝑖

𝑛

𝑖=1

+
𝑓 𝑛+1  𝑝 

 𝑛 + 1 !
ℎ𝑛+1 
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Differential Calculus 

Example: 

Find the Taylor series expansion of 𝑒−𝑥  about 𝑥 = 0. 

Since 𝑓 ′ 𝑥 = −𝑒−𝑥  and 𝑓 ′′  𝑥 = 𝑒−𝑥 , the Taylor series expansion will 

hold for  0, 𝑏 . Also, since 𝑓 0 = 0, 𝑓 ′ 0 = −1 and 𝑓 ′′  𝑥 = 𝑒−𝑥 , we 

have 

𝑓 ℎ = 𝑒−ℎ = 1 − ℎ +
ℎ2𝑒−𝑝

2
, 𝑝 ∈  0, ℎ  
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Differential Calculus 

Partial Derivatives 
The partial derivative of function 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛  with respect to 𝑥𝑖  is 

defined as 

𝜕𝑓

𝜕𝑥𝑖
= lim

Δ𝑥𝑖→0

𝑓 𝑥1 , … , 𝑥𝑖 + Δ𝑥𝑖 , … , 𝑥𝑛 − 𝑓 𝑥1 , … , 𝑥𝑖 , … , 𝑥𝑛 

Δ𝑥𝑖
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Introduction to NLP 

A feasible region for an NLP is the set of points  𝑥1 , 𝑥2 , … , 𝑥𝑛  that 

satisfy the constraint equations of the NLP. Any point 𝑥  in the feasible 

region for which 𝑓 𝑥  ≥ 𝑓 𝑥  holds for ∀𝑥 in the feasible region is an 

optimal solution to the NLP (for a max problem). 
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Introduction to NLP 

Example: 

It costs 𝑐 dollars per unit to manufacture a product. If the manufacturer 

charges 𝑝 dollars per unit for the product, customer demand 𝑑𝑝 units. 

What price should be charged to maximize profit? 

We have the following unconstrained NLP: 

max 𝑝 − 𝑐 𝑑𝑝 
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Introduction to NLP 

Example: 

If 𝐶 units of capital and 𝐿 units of labor are used, a company can 

produce 𝐾𝐿 units of a manufactured good. Capital can be purchased at 

$4/unit and labor can be purchased at $1/unit. A total of $8 is available 

to purchase capital and labor. How can the firm maximize the quantity 

of the good that can be manufactured? 

We have the following NLP: 

max 𝑧 = 𝐾𝐿  S.T.  4𝐾 + 𝐿 ≤ 8; 𝐾, 𝐿 ≥ 0 
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Introduction to NLP 
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Introduction to NLP 
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Introduction to NLP 

Local Extremum 
For an NLP (max), a feasible point 𝐱 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  is a local 

maximum if for sufficiently small 𝜀, 𝐱′ =  𝑥1′, 𝑥2′, … , 𝑥𝑛 ′  having 

 𝑥𝑖 − 𝑥𝑖 ′ < 𝜀 for ∀𝑖 satisfies 𝑓 𝐱 ≥ 𝑓 𝐱′ . 
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Introduction to NLP 

Example: 

Truckco is trying to determine where it should locate a single 

warehouse. The positions in the 𝑥 − 𝑦 plane (in miles) of four customers 

and the number of shipments made annually to each customer are 

given in the below table. Truckco wants to locate the warehouse to 

minimize the total distance trucks must travel annually from the 

warehouse to the four customers. 

Customer 𝑥 𝑦 # of Shipments 

1 5 10 200 
2 10 5 150 
3 0 12 200 
4 0 0 300 
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Introduction to NLP 

We let 

 𝑥 = 𝑥-coordinate of the warehouse 

 𝑦 = 𝑦-coordinate of the warehouse 

 𝑑𝑖 = distance from customer 𝑖 to the warehouse 

We then have 

min 𝑧 = 200𝑑1 + 150𝑑2 + 200𝑑3 + 300𝑑4 

𝑑1 =   𝑥 − 5 2 +  𝑦 − 10 2 

𝑑2 =   𝑥 − 10 2 +  𝑦 − 5 2 

𝑑3 =  𝑥2 +  𝑦 − 12 2 

𝑑4 =   𝑥 − 12 2 + 𝑦2 

𝑧 = 5,456.540; 𝑥 = 9.314, 𝑦 = 5.029, 𝑑1 = 6.582, 𝑑2 = 0.686, 

𝑑3 = 11.634, 𝑑4 = 5.701 
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Introduction to NLP 

Example: 

max 𝑧 =  𝑥 − 1  𝑥 − 2  𝑥 − 3  𝑥 − 4  𝑥 − 5 , 𝑥 ≥ 1; 𝑥 ≤ 5 
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Convex and Concave Functions 

Convex and Concave Functions 
A function 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛  is a convex function on a convex set 𝑆 if, for 

any 𝐱′ ∈ 𝑆 and 𝐱′′ ∈ 𝑆, and for 0 ≤ 𝜆 ≤ 1, the following expression 

holds: 

𝑓 𝜆𝐱′ +  1 − 𝜆 𝐱′′ ≤ 𝜆𝑓 𝐱′ +  1 − 𝜆 𝑓 𝐱′′  
 

A function 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛  is a concave function on a convex set 𝑆 if, for 

any 𝐱′ ∈ 𝑆 and 𝐱′′ ∈ 𝑆, and for 0 ≤ 𝜆 ≤ 1, the following expression 

holds: 

𝑓 𝜆𝐱′ +  1 − 𝜆 𝐱′′ ≥ 𝜆𝑓 𝐱′ +  1 − 𝜆 𝑓 𝐱′′  
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Convex and Concave Functions 

Theorem: 

The sum of two convex (concave) functions is also convex (concave). 

 

Theorem: 

A linear function is both convex and concave. 

 

Theorem: 

If a feasible region 𝑆 for a max NLP is a convex set, and if 𝑓 𝐱  is 
concave on 𝑆, then, any local maximum for the NLP is also the global 
maximum (the optimal solution). 
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Convex and Concave Functions 

Theorem: 

If a feasible region 𝑆 for a min NLP is a convex set, and if 𝑓 𝐱  is convex 
on 𝑆, then, any local minimum for the NLP is also the global minimum 
(the optimal solution). 

 

Theorem: 

If 𝑓′′ 𝐱  exists for all 𝐱 in a convex set 𝑆, then, 𝑓 𝐱  is a convex function 
on 𝑆 iif 𝑓′′ 𝐱 ≥ 0 for ∀𝐱 ∈ 𝑆. 

 

Theorem: 

If 𝑓′′ 𝐱  exists for all 𝐱 in a convex set 𝑆, then, 𝑓 𝐱  is a concave 
function on 𝑆 iif 𝑓′′ 𝐱 ≤ 0 for ∀𝐱 ∈ 𝑆. 
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Convex and Concave Functions 

Examples: 

𝑓 𝑥 = 𝑥2 is convex on 𝑆 = 𝑅1 since 𝑓′′ 𝑥 = 2 ≥ 0 

𝑓 𝑥 = 𝑒𝑥  is convex on 𝑆 = 𝑅1 since 𝑓′′ 𝑥 = 𝑒𝑥 ≥ 0 

𝑓 𝑥 =  𝑥 is concave on 𝑆 =  0, ∞  since 𝑓′′ 𝑥 = −
𝑥−3/2

4
≤ 0 

𝑓 𝑥 = 𝑎𝑥 + 𝑏 is both convex and concave on 𝑆 = 𝑅1 since 𝑓′′ 𝑥 = 0 
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Convex and Concave Functions 

The Hessian of 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛  is the 𝑛 × 𝑛 matrix whose  𝑖, 𝑗 th entry 

is given by 

ℎ𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
 

 

An 𝑖th principal minor of an 𝑛 × 𝑛 matrix is the determinant of any 𝑖 × 𝑖 
matrix obtained by deleting 𝑛 − 𝑖 rows and the corresponding 𝑛 − 𝑖 
columns of the matrix. 

 

The 𝑘th leading principal minor of an 𝑛 × 𝑛 matrix is the determinant of 
the 𝑘 × 𝑘 matrix obtained by deleting the last 𝑛 − 𝑘 rows and columns 
of the matrix. 
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Convex and Concave Functions 

Theorem: 

Suppose 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛  has continuous second-order partial 
derivatives for ∀𝐱 ∈ 𝑆. Then, 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛  is a convex function on 𝑆 
iif for ∀𝐱 ∈ 𝑆, all principal minors of 𝐇 are non-negative. 

 

Theorem: 

Suppose 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛  has continuous second-order partial 
derivatives for ∀𝐱 ∈ 𝑆. Then, 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛  is a concave function on 𝑆 
iif for ∀𝐱 ∈ 𝑆 and 𝑘 = 1,2, … , 𝑛, all non-zero principal minors of 𝐇 have 

the same sign as  −1 𝑘 . 
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Convex and Concave Functions 

Example: 

𝑓 𝑥1 , 𝑥2 = 𝑥1
2 + 2𝑥1𝑥2 + 𝑥2

2 

𝐻 𝑥1 , 𝑥2 =  
2 2
2 2

  

Note that the first principal minors are both 2 and the second principal 

minor is 2 ( 2 ) – 2 ( 2 ) = 0 

Since all principal minors are nonnegative, the function is convex on 𝑅2. 
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Convex and Concave Functions 

Example: 

𝑓 𝑥1 , 𝑥2 , 𝑥3 = 𝑥1
2 + 𝑥2

2 + 2𝑥3
2 − 𝑥1𝑥2 − 𝑥1𝑥3 − 𝑥2𝑥3 

𝐻 𝑥1 , 𝑥2 , 𝑥3 =  
2 −1 −1

−1 2 −1
−1 −1 4

  

Note that the first principal minors are 4, 2 and 2 and the second 

principal minor is 

det  
2 −1

−1 4
 = 7, det  

2 −1
−1 4

 = 7, det  
2 −1

−1 2
 = 3 

Finally, the third principal minor is 

det  
2 −1 −1

−1 2 −1
−1 −1 4

 = 6 

Since all principal minors are nonnegative, the function is convex on 𝑅3. 
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NLPs with 1 Variable 

We assume that we have the following LP: 

max 𝑓 𝑥 , 𝑥 ∈  𝑎, 𝑏  

There are 3 types of points for which we can have local max or min 

points (extremum candidates): 

Case 1. Points where 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑓′ 𝑥 = 0 (stationary point) 

Case 2. Points where 𝑓′ 𝑥  does not exist. 

Case 3. Endpoints of the interval  𝑎, 𝑏 . 
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NLPs with 1 Variable: Case 1 
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NLPs with 1 Variable: Case 1 
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NLPs with 1 Variable: Case 1 

Theorem: 

If 𝑓′ 𝑥0 = 0 and 𝑓′′ 𝑥0 < 0, then, 𝑥0 is a local maximum. 
If 𝑓′ 𝑥0 = 0 and 𝑓′′ 𝑥0 > 0, then, 𝑥0 is a local minimum. 

 

If both derivatives are zero, we can use the following theorem: 

Theorem: 

If 𝑓′ 𝑥0 = 0, and 
 
- if the first non-zero derivative at 𝑥0 is an odd-order derivative, then, 𝑥0 
is a not a local max or min. 
- if the first non-zero derivative at 𝑥0 is positive and an even-order 
derivative, then, 𝑥0 is a local min. 
- if the first non-zero derivative at 𝑥0 is negative and an even-order 
derivative, then, 𝑥0 is a local max. 
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NLPs with 1 Variable: Case 2 

If 𝑓′ 𝑥  does not exist, we can use the followings to determine if 𝑥0 is a 

local min or max based on the relationships between 𝑓 𝑥0 , 𝑓 𝑥1  and 

𝑓 𝑥2 : 

𝑓 𝑥0 > 𝑓 𝑥1  and 𝑓 𝑥0 < 𝑓 𝑥2 ⇒ 𝑥0 not a local extremum (fig a) 

𝑓 𝑥0 < 𝑓 𝑥1  and 𝑓 𝑥0 > 𝑓 𝑥2 ⇒ 𝑥0 not a local extremum (fig b) 

𝑓 𝑥0 ≥ 𝑓 𝑥1  and 𝑓 𝑥0 ≥ 𝑓 𝑥2 ⇒ 𝑥0 a local max (fig c) 

𝑓 𝑥0 ≤ 𝑓 𝑥1  and 𝑓 𝑥0 ≤ 𝑓 𝑥2 ⇒ 𝑥0 a local min (fig d) 
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NLPs with 1 Variable: Case 2 

fatihcavdur@uludag.edu.tr 



NLPs with 1 Variable: Case 3 

𝑓′ 𝑎 > 0 ⇒ 𝑎 is a local min 

𝑓′ 𝑎 < 0 ⇒ 𝑎 is a local max 

𝑓′ 𝑏 > 0 ⇒ 𝑏 is a local max 

𝑓′ 𝑏 < 0 ⇒ 𝑏 is a local min 
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NLPs with 1 Variable: Case 3 
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Golden Section Search 

Suppose that we have the following NLP: 

max 𝑓 𝑥 , 𝑎 ≤ 𝑥 ≤ 𝑏 

If 𝑓′ 𝑥  does not exist for some 𝑥, or if it may be difficult to solve 

𝑓′ 𝑥 = 0. In this case we can use a new approach if 𝑓 𝑥  is a unimodal 

function. 
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Golden Section Search 

If 𝑓 𝑥  is unimodal on  𝑎, 𝑏 , then, 𝑓 𝑥  will have only one local 

maximum 𝑥  on  𝑎, 𝑏  and that local maximum will solve the NLP. By 

evaluating 𝑓 𝑥  at two points 𝑥1 and 𝑥2 on  𝑎, 𝑏  where 𝑥1 < 𝑥2, we 

may reduce the size of the interval in which the solution to the NLP 

must lie. After evaluation of the function, 3 cases might be possible: 

Case 1: 𝑓 𝑥1 < 𝑓 𝑥2  

Case 2: 𝑓 𝑥1 = 𝑓 𝑥2  

Case 3: 𝑓 𝑥1 > 𝑓 𝑥2  

A function 𝑓 𝑥  is unimodal on  𝑎, 𝑏  if for some 𝑥 ∈  𝑎, 𝑏 , 𝑓 𝑥  is 
strictly increasing on  𝑎, 𝑥   and strictly decreasing on  𝑥 , 𝑏 . 
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Golden Section Search 

Case 1: If 𝑓 𝑥1 < 𝑓 𝑥2 , since the function is unimodal the optimal 

solution cannot be on  𝑎, 𝑥1 . So, we have 

𝑓 𝑥1 < 𝑓 𝑥2 ⇒ 𝑥 ∈ (𝑥1 , 𝑏] 

Case 2: If 𝑓 𝑥1 = 𝑓 𝑥2 , since the function is unimodal the optimal 

solution must have 𝑥 < 𝑥2. So, we have 

𝑓 𝑥1 = 𝑓 𝑥2 ⇒ 𝑥 ∈ [𝑎, 𝑥2] 

Case 3: If 𝑓 𝑥1 > 𝑓 𝑥2 , since the function is unimodal the optimal 

solution must have 𝑥 < 𝑥2. So, we have 

𝑓 𝑥1 > 𝑓 𝑥2 ⇒ 𝑥 ∈ [𝑎, 𝑥2] 

The interval in which 𝑥  lies is called the interval of uncertainty. We can 

use a search algorithm to find 𝑥 . 
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Search Algorithm 

Step 1: Begin with [𝑎, 𝑏]. Evaluate 𝑓(𝑥) at two judiciously points 𝑥1 and 

𝑥2. 

Step 2: Determine the case (1, 2 or 3) and reduce the interval. 

Step 3: Evaluate 𝑓(𝑥) at two new points. Return to Step 2 unless the 

interval is small enough. 
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Golden Section Search Algorithm 

We find 𝑟 as the root of the equation: 

𝑟2 + 𝑟 − 1 = 0 ⇒ 𝑟 =
 5 − 1

2
= 0.618 

Golden Section Search starts with points 

𝑥1 = 𝑏 − 𝑟(𝑏 − 𝑎) 

𝑥2 = 𝑎 + 𝑟(𝑏 − 𝑎) 

Each time 𝑓(𝑥) is evaluated the interval of uncertainty is reduced, an 

iteration of the Golden Section Search is completed. 

𝐿𝑘 = the length of the interval of uncertainty after 𝑘 iterations 

𝐼𝑘 = the interval of uncertainty after 𝑘 iterations 
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Golden Section Search Algorithm 

If 𝑓 𝑥1 < 𝑓(𝑥2), then 

𝑥3 = 𝑏 − 𝑟 𝑏 − 𝑥1 = 𝑏 − 𝑟2(𝑏 − 𝑎) 

𝑥4 = 𝑥1 + 𝑟 𝑏 − 𝑥1  
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Golden Section Search Algorithm 

If 𝑓 𝑥1 ≥ 𝑓(𝑥2), then 

𝑥3 = 𝑥2 − 𝑟 𝑥2 − 𝑎  

𝑥4 = 𝑎 + 𝑟 𝑥2 − 𝑎 = 𝑎 + 𝑟2(𝑏 − 𝑎) 
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Golden Section Search Algorithm 

Example: Solve the following problem with the final interval of 

uncertainty’s length is less than 1/4. 

max −𝑥2 − 1 , −1 ≤ 𝑥 ≤ 0.75 

We have 𝑎 = −1 and 𝑏 = 0.75 and 𝑏 − 𝑎 = 1.75. We should perform 𝑘 

iterations where 

1.75 0.618 𝑘 ≤ 0.25 ⇒ 𝑘 >
ln  

1
7
 

ln 0.618 
= 4.06 
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Golden Section Search Algorithm 

𝑥1 = 0.75 −  0.618  1.75 = −0.3315 ⇒ 𝑓 𝑥1 = −1.1099 

𝑥2 = −1 +  0.618  1.75 = 0.0815 ⇒ 𝑓 𝑥2 = −1.0066 

𝑓 𝑥1 < 𝑓 𝑥2 ⇒ 𝐼1 = (𝑥1 , 𝑏] = (−0.3315,0.75] 

We also have 𝐿1 = 0.75 + 0.3315 = 1.0815. We can now write 

𝑥3 = 𝑥2 = 0.0815 ⇒ 𝑓 𝑥3 = −1.0066 

𝑥4 = −3315 + 0.618 1.0815 = 0.3369 ⇒ 𝑓 𝑥4 = −1.1135 

𝑓 𝑥3 > 𝑓 𝑥4 ⇒ 𝐼1 = [−0.3315, 𝑥4) = [−0.3315,0.3369) 

Continuing in a similar manner, we obtain 

𝐼5 =  𝑥9, 0.0815 = (−0.0762,0.0815] and 𝐿5 = 0.1577 < 0.25 
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Unconstrained Problems 

Consider the following NLP: 

max 𝑓(𝐱), 𝑥 ∈ 𝑅𝑛  

or 

min 𝑓(𝐱), 𝑥 ∈ 𝑅𝑛  

We assume that the first and second partial derivatives exist and 

continuous for ∀𝑥𝑖 . 
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Unconstrained Problems 

Theorem: 

If 𝑥  is a local extremum, then, 
𝜕𝑓(𝑥 )

𝜕𝑥𝑖
= 0 

𝑥  is called a stationary point of 𝑓. 
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Unconstrained Problems 

Theorem: 

If 𝐻𝑘 𝑥  > 0, 𝑘 = 1,2, … , 𝑛, then, a stationary point 𝑥  is local min for 
the NLP. 

 

Theorem: 

If 𝐻𝑘 𝑥  ≠ 0, 𝑘 = 1,2, … , 𝑛, and has the same sign with  −1 𝑘 , then, a 
stationary point 𝑥  is local max for the NLP. 
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Unconstrained Problems 

Theorem: 

If 𝐻𝑘 𝑥  ≠ 0, 𝑘 = 1,2, … , 𝑛, and the above theorems do not hold , then, 
a stationary point 𝑥  is not a local extremum. 

 

Theorem: 

If a stationary point is not a local extremum, then, it is a saddle point. 
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Unconstrained Problems 

Example: 

𝑓 𝑥1 , 𝑥2 = 𝑥1
2𝑥2 + 𝑥1𝑥2

3 − 𝑥1𝑥2 

𝜕𝑓

𝜕𝑥1
= 2𝑥1𝑥2 + 𝑥2

3 − 𝑥2 

𝜕𝑓

𝜕𝑥2
= 𝑥1

2 + 3𝑥1𝑥2
2 − 𝑥1 

𝜕𝑓

𝜕𝑥1
= 0 ⇒ 𝑥2 2𝑥1 + 𝑥2

2 − 1 = 0 ⇒ 𝑥2 = 0 ∨ 2𝑥1 + 𝑥2
2 − 1 = 0 

𝜕𝑓

𝜕𝑥1
= 0 ⇒ 𝑥1 𝑥1 + 3𝑥2

2 − 1 = 0 ⇒ 𝑥1 = 0 ∨ 𝑥1 + 3𝑥2
2 − 1 = 0 
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Unconstrained Problems 

If we write, 

(i). 𝑥2 = 0 

(ii). 2𝑥1 + 𝑥2
2 − 1 = 0 

(iii). 𝑥1 = 0 

(iv). 𝑥1 + 3𝑥2
2 − 1 = 0 

We obtain the following stationary points: 

 (i) and (iii) hold.  𝑥1 , 𝑥2 =  0,0  

 (i) and (iv) hold.  𝑥1 , 𝑥2 =  1,0  

 (ii) and (iii) hold.  𝑥1 , 𝑥2 =  0,1  and  𝑥1 , 𝑥2 =  0, −1  

 (ii) and (iv) hold.  𝑥1 , 𝑥2 =  
2

5
,
 5

5
  and  𝑥1 , 𝑥2 =  

2

5
, −

 5

5
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Unconstrained Problems 

𝐻 𝑥1 , 𝑥2 =  
2𝑥2 2𝑥1 + 3𝑥2

2 − 1

2𝑥1 + 3𝑥2
2 − 1 6𝑥1𝑥2

  

Note that 𝐻1 0,0 = 0, and 𝐻2 0,0 = −1 ≠ 0, then,  0,0  is a saddle 

point. 

Also note that 𝐻1 1,0 = 0 and 𝐻2 1,0 = −1 ≠ 0, then,  1,0  is also a 

saddle point. 

Also note that 𝐻1 0,1 = 2 and 𝐻2 0,1 = −4 ≠ 0, then,  1,0  is also a 

saddle point. 
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Unconstrained Problems 

Finally, since 

𝐻1  
2

5
, −

 5

5
 = −

2

 5
< 0, 𝐻2  

2

5
, −

 5

5
 =

4

5
> 0 

and 

𝐻1  
2

5
,
 5

5
 =

2

 5
> 0, 𝐻2  

2

5
,
 5

5
 =

4

5
> 0 

Points  
2

5
, −

 5

5
  and  

2

5
,
 5

5
  are local max and local min, respectively. 
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Steepest Ascent 

We can use the method of steepest ascent to approximate a stationary 

point. Given a vector 𝐱 =  𝑥1 , 𝑥2 , … , 𝑥𝑛 ∈ 𝑅𝑛 , the length of 𝐱 is 

  𝐱  =  𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛
2 

The gradient vector for 𝑓(𝑥1 , 𝑥2 , … , 𝑥𝑛 ) is 

∇𝑓 𝐱 =  
𝜕𝑓(𝐱)

𝜕𝑥1
,
𝜕𝑓(𝐱)

𝜕𝑥2
, … ,

𝜕𝑓(𝐱)

𝜕𝑥𝑛
  

∇𝑓 𝐱  defines the direction 

∇𝑓 𝐱 

  ∇𝑓 𝐱   
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Steepest Ascent 
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Steepest Ascent 

Example: Use the method of steepest ascent to find the approximate 

solution of the following NLP: 

max 𝑓 𝑥1 , 𝑥2 = − 𝑥1 − 3 2 −  𝑥2 − 2 2 , 𝑥1 , 𝑥2 ∈ 𝑅2
 

We arbitrarily choose 𝑣0 =  1,1 . 

∇𝑓 𝑥1 , 𝑥2 =  −2 𝑥1 − 3 −2 𝑥2 − 2  ⇒ ∇𝑓 1,1 =  4 2  
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Steepest Ascent 

We thus choose 𝑡0 as to maximize 

𝑓 𝑡0 = 𝑓  1,1 + 𝑡0 4,2   

= 𝑓 1 + 4𝑡0 , 1 + 2𝑡0  

= − −2 + 4𝑡0 2 −  −1 + 2𝑡0 2 

𝑓′ 𝑡0 = 0 ⇒ 𝑡0 = 0.5 

𝑣1 =  1,1 + 0.5 4,2 =  3,2 ⇒⇒ ∇𝑓 1,1 =  0 0  

Since 𝑓 is concave,  3,2  is the optimal solution. 
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Lagrange Multipliers 

If all constraints are equalities, we can use the Lagrange Multipliers to 

solve such NLPs. Consider an NLP as follows: 

max(min) 𝑓(𝐱) 

𝑔1 𝐱 = 𝑏1 

𝑔2 𝐱 = 𝑏2 

… … … … … 

𝑔𝑚  𝐱 = 𝑏𝑚  
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Lagrange Multipliers 

If we associate a multiplier 𝜆𝑖  with the 𝑖th constraint, we perform the 

Lagrangian as follows: 

𝐿 𝑥1 , 𝑥2 , … , 𝑥𝑛 ; 𝜆1, 𝜆2 , … , 𝜆𝑚 = 𝑓 𝐱 +  𝜆𝑖

𝑚

𝑖=1

[𝑏𝑖 − 𝑔𝑖(𝐱)] 

We then find, 

𝜕𝐿

𝜕𝜆𝑖
= 𝑏𝑖 − 𝑔𝑖 𝐱 = 0 

If we have max 𝐿 𝑥1 , 𝑥2 , … , 𝑥𝑛 ; 𝜆1 , 𝜆2 , … , 𝜆𝑚  , then, it is necessary that 

 𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝜆 
1, 𝜆 

2 , … , 𝜆 
𝑚  satisfies the following condition: 

𝜕𝐿

𝜕𝑥1
=

𝜕𝐿

𝜕𝑥2
= ⋯ =

𝜕𝐿

𝜕𝑥𝑛
=

𝜕𝐿

𝜕𝜆1
=

𝜕𝐿

𝜕𝜆2
= ⋯ =

𝜕𝐿

𝜕𝜆𝑚
= 0 
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Lagrange Multipliers 

Theorem: 

If we have a max NLP, and if 𝑓(𝐱) is a concave function and each 𝑔𝑖(𝐱) 

is a linear function, then, any point  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝜆 
1 , 𝜆 

2, … , 𝜆 
𝑚  

satisfying the following equation  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  is optimal: 
𝜕𝐿

𝜕𝑥1
=

𝜕𝐿

𝜕𝑥2
= ⋯ =

𝜕𝐿

𝜕𝑥𝑛
=

𝜕𝐿

𝜕𝜆1
=

𝜕𝐿

𝜕𝜆2
= ⋯ =

𝜕𝐿

𝜕𝜆𝑚
= 0 

 

Theorem: 

If we have a min NLP, and if 𝑓(𝐱) is a convex function and each 𝑔𝑖(𝐱) is 

a linear function, then, any point  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛 ; 𝜆 
1 , 𝜆 

2 , … , 𝜆 
𝑚  satisfying 

the following equation  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  is optimal: 
𝜕𝐿

𝜕𝑥1
=

𝜕𝐿

𝜕𝑥2
= ⋯ =

𝜕𝐿

𝜕𝑥𝑛
=

𝜕𝐿

𝜕𝜆1
=

𝜕𝐿

𝜕𝜆2
= ⋯ =

𝜕𝐿

𝜕𝜆𝑚
= 0 
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Lagrange Multipliers 
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The Kuhn-Tucker Conditions 

In this section, we discuss the necessary and sufficient conditions for 

𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  to be an optimal solution to the following NLP: 

max(min) 𝑓(𝐱) 

𝑔1 𝐱 ≤ 𝑏1 

𝑔2 𝐱 ≤ 𝑏2 

… … … … … 

𝑔𝑚  𝐱 ≤ 𝑏𝑚  
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The Kuhn-Tucker Conditions 

Theorem (*): 

If 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  is an optimal solution to the NLP which is a max 
problem, then, 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  must satisfy the 𝑚 constraints in the 

NLP and there must exist multipliers 𝜆 
1 , 𝜆 

2 , … , 𝜆 
𝑚  satisfying 

 

𝜕𝑓(𝐱 )

𝜕𝑥𝑗
−  𝜆 

𝑖

𝑚

𝑖=1

𝜕𝑔𝑖(𝐱 )

𝜕𝑥𝑗
= 0; ∀𝑗 

𝜆 
𝑖 𝑏𝑖 − 𝑔𝑖(𝐱 ) = 0; ∀𝑖 

𝜆 
𝑖 ≥ 0; ∀𝑖 
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The Kuhn-Tucker Conditions 

Theorem (**): 

If 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  is an optimal solution to the NLP which is a min 
problem, then, 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  must satisfy the 𝑚 constraints in the 

NLP and there must exist multipliers 𝜆 
1 , 𝜆 

2 , … , 𝜆 
𝑚  satisfying 

 

𝜕𝑓(𝐱 )

𝜕𝑥𝑗
+  𝜆 

𝑖

𝑚

𝑖=1

𝜕𝑔𝑖(𝐱 )

𝜕𝑥𝑗
= 0; ∀𝑗 

𝜆 
𝑖 𝑏𝑖 − 𝑔𝑖(𝐱 ) = 0; ∀𝑖 

𝜆 
𝑖 ≥ 0; ∀𝑖 
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The Kuhn-Tucker Conditions 

Theorem (***): 

If 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  is an optimal solution to the NLP which is a max 
problem, then, 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  must satisfy the 𝑚 constraints in the 

NLP and there must exist multipliers 𝜆 
1 , 𝜆 

2 , … , 𝜆 
𝑚 ; 𝜇 1 , 𝜇 2 , … , 𝜇 𝑛  

satisfying 
 

𝜕𝑓(𝐱 )

𝜕𝑥𝑗
−  𝜆 

𝑖

𝑚

𝑖=1

𝜕𝑔𝑖(𝐱 )

𝜕𝑥𝑗
+ 𝜇𝑗 = 0; ∀𝑗 

𝜆 
𝑖 𝑏𝑖 − 𝑔𝑖(𝐱 ) = 0; ∀𝑖 

 
𝜕𝑓(𝐱 )

𝜕𝑥𝑗
−  𝜆 

𝑖

𝑚

𝑖=1

𝜕𝑔𝑖(𝐱 )

𝜕𝑥𝑗
 𝑥 𝑗 = 0; ∀𝑗 

𝜆 
𝑖 ≥ 0; ∀𝑖 

𝜇 𝑗 ≥ 0; ∀𝑗 
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The Kuhn-Tucker Conditions 

Theorem (****): 

If 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  is an optimal solution to the NLP which is a min 
problem, then, 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  must satisfy the 𝑚 constraints in the 

NLP and there must exist multipliers 𝜆 
1 , 𝜆 

2 , … , 𝜆 
𝑚 ; 𝜇 1 , 𝜇 2 , … , 𝜇 𝑛  

satisfying 
 

𝜕𝑓(𝐱 )

𝜕𝑥𝑗
−  𝜆 

𝑖

𝑚

𝑖=1

𝜕𝑔𝑖(𝐱 )

𝜕𝑥𝑗
− 𝜇𝑗 = 0; ∀𝑗 

𝜆 
𝑖 𝑏𝑖 − 𝑔𝑖(𝐱 ) = 0; ∀𝑖 

 
𝜕𝑓(𝐱 )

𝜕𝑥𝑗
+  𝜆 

𝑖

𝑚

𝑖=1

𝜕𝑔𝑖(𝐱 )

𝜕𝑥𝑗
 𝑥 𝑗 = 0; ∀𝑗 

𝜆 
𝑖 ≥ 0; ∀𝑖 

𝜇 𝑗 ≥ 0; ∀𝑗 
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The Kuhn-Tucker Conditions 

Theorem: 

If 𝑓(𝐱) is a concave function and if 𝑔𝑖(𝐱) are convex functions for ∀𝑖, 
then, any point 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  satisfying Theorem (*) is an optimal 
solution to the NLP which is a max problem. 
If 𝑓(𝐱) is a concave function and if 𝑔𝑖(𝐱) are convex functions for ∀𝑖, 
then, any point 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  satisfying Theorem (***) is an 
optimal solution to the NLP which is a max problem. 

 

Theorem: 

If 𝑓(𝐱) is a convex function and if 𝑔𝑖(𝐱) are convex functions for ∀𝑖, 
then, any point 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  satisfying Theorem (**) is an optimal 
solution to the NLP which is min problem. 
If 𝑓(𝐱) is a concave function and if 𝑔𝑖(𝐱) are convex functions for ∀𝑖, 
then, any point 𝐱 =  𝑥 1 , 𝑥 2 , … , 𝑥 𝑛  satisfying Theorem (****) is an 
optimal solution to the NLP which is a min problem. 
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The Kuhn-Tucker Conditions 
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The Kuhn-Tucker Conditions 
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The Kuhn-Tucker Conditions 

Example: 

max 𝑧 = 𝑥1 30 − 𝑥1 + 𝑥2 50 − 2𝑥2 − 3𝑥1 − 5𝑥2 − 10𝑥3 

𝑥1 + 𝑥2 − 𝑥3 ≤ 0 

𝑥3 ≤ 17.25 

𝑥𝑖 ≥ 0, ∀𝑖 

The K-T conditions are 

30 − 2𝑥1 − 3 − 𝜆1 = 0 

50 − 4𝑥2 − 5 − 𝜆1 = 0 

−10 + 𝜆1 − 𝜆2 = 0 

𝜆1 −𝑥1 − 𝑥2 + 𝑥3 = 0 

𝜆2 17.25 − 𝑥3 = 0 

𝜆1 ≥ 0 

𝜆2 ≥ 0 
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The Kuhn-Tucker Conditions 

Case 1: 𝜆1 = 𝜆2 = 0. It violates the third constraint. 

Case 2: 𝜆1 = 0, 𝜆2 > 0. It violates the third constraint. 

Case 3: 𝜆1 > 0, 𝜆2 = 0. By solving the above system, we have 𝑥1 = 8.5, 

𝑥2 = 8.75, 𝑥3 = 17.25, 𝜆1 = 10 and 𝜆2 = 0, which satisfies the K-T 

conditions. 

Case 4: 𝜆1 > 0, 𝜆2 > 0. Since Case (3) gives the optimal solution, it is 

not necessary to consider this. 
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Quadratic Programming 

An NLP whose constraints are linear and whose objective is the sum of 

the terms of the form 𝑥1
𝑘1𝑥2

𝑘2 …𝑥𝑛
𝑘𝑛  with each term having a degree of 

0, 1 or 2 is a Quadratic Programming Problem (QPP). 
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Portfolio Selection 

Example: I have $1,000 to invest in three stocks. Let 𝑆𝑖  be the random 

variable representing the annual return on $1 invested in stock i. Thus, if 

𝑆𝑖 = 0.12, $1 invested in stock 𝑖 at the beginning of a year was worth 

$1.12 at the end of the year. We are given the following information: 

𝐸 𝑆1 = 0.14, 𝐸 𝑆2 = 0.11, 𝐸 𝑆3 = 0.10 

𝑉 𝑆1 = 0.20, 𝑉 𝑆2 = 0.08, 𝑉 𝑆3 = 0.18 

𝐶 𝑆1 , 𝑆2 = 0.05, 𝐶 𝑆1 , 𝑆3 = 0.02, 𝐶 𝑆2 , 𝑆3 = 0.03 

Formulate a QPP that can be used to find the portfolio that attains an 

expected annual return of at least 12% and minimizes the variance of 

the annual dollar return on the portfolio. 
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Portfolio Selection 

Let 𝑥𝑖  be the number of dollars invested in stock 𝑖. 

min 0.20𝑥1
2 + 0.08𝑥2

2 + 0.18𝑥3
2 + 0.10𝑥1𝑥2 + 0.04𝑥1𝑥3 + 0.06𝑥2𝑥3 

0.14𝑥1 + 0.11𝑥2 + 0.10𝑥3 ≥ 120 

 𝑥𝑖

3

𝑖=1

= 1 

𝑥𝑖 ≥ 0, ∀𝑖 
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Wolfe’s Method for QPs 

We can use the Wolfe’s method to solve QPPs with non-negative 

variables. Consider the following example: 

min 𝑧 = −𝑥1 − 𝑥2 +
𝑥1

2

2
+ 𝑥2

2 − 𝑥1𝑥2 

𝑥1 + 𝑥2 ≤ 3 

−2𝑥1 − 3𝑥2 ≤ −6 

𝑥𝑖 ≥ 0; ∀𝑖 
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Wolfe’s Method for QPs 

We can write the followings where all variables are non-negative: 

𝑥1 − 1 − 𝑥2 + 𝜆1 − 2𝜆2 − 𝑒1 = 0 

2𝑥1 − 1 − 𝑥1 + 𝜆1 − 3𝜆2 − 𝑒2 = 0 

𝑥1 + 𝑥2 + 𝑠1′ = 3 

2𝑥1 + 3𝑥2 − 𝑒2′ = 6 

𝜆2𝑒2
′ = 0 

𝜆1𝑠1
′ = 0 

𝑒1𝑥1 = 0 

𝑒2𝑥2 = 0 
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Wolfe’s Method for QPs 

We note that except the last 4 equations, all equations are linear. To 

apply the Wolfe’s method, we need to solve the following LP with all 

non-negative variables: 

min 𝑤 = 𝑎1 + 𝑎2 + 𝑎2′ 

𝑥1 − 𝑥2 + 𝜆1 − 2𝜆2 − 𝑒1 + 𝑎1 = 1 

−𝑥1 + 2𝑥2 + 𝜆1 − 3𝜆2 − 𝑒2 + 𝑎2 = 1 

𝑥1 + 𝑥2 + 𝑠1′ = 3 

2𝑥1 + 3𝑥2 + 𝑒2
′ + 𝑎2′ = 6 
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Wolfe’s Method for QPs 

The optimal solution of the LP is shown in the below table where 

𝑤 = 0; 𝑥1 =
9

5
, 𝑥2 =

6

5
, 𝜆1 =

2

5
, 𝜆2 = 0 (since 𝑒2

′ =
6

5
, 𝜆2 = 0) 

Wolfe’s method is guaranteed to obtain the optimal solution to a QPP if 

all leading principal minors of the objective function’s Hessian are 

positive. Otherwise, Wolfe’s method may not converge in a finite 

number of pivots. In practice, the method of complementary pivoting is 

most often used to solve QPPs which will not be discussed in this class. 
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Wolfe’s Method for QPs 

𝑤 𝑥1  𝑥2  𝜆1 𝜆2 𝑒1 𝑒2 𝑠1′ 𝑒2′ 𝑎1  𝑎2  𝑎2′ RHS 

1 0 0 0 0 0 0 0 0 -1 -1 -1 0 
0 0 0 1 -12/5 -3/5 -2/5 -1/5 0 3/5 2/5 0 2/5 
0 0 1 0 -1/5 1/5 -1/5 2/5 0 -1/5 1/5 0 6/5 
0 0 0 0 -1/5 1/5 -1/5 12/5 1 -1/5 1/5 -1 6/5 
0 1 0 0 1/5 -1/5 1/5 3/5 0 1/5 -1/5 0 9/5 
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Separable Programming 

max 𝑧 =  𝑓𝑖 𝑥𝑖 

𝑛

𝑖=1

 

 𝑔𝑖𝑗  𝑥𝑖 

𝑛

𝑖=1

≤ 𝑏𝑗 , 𝑗 = 1, … , 𝑚 

Separable Programing Problems are often solved by approximating 

𝑓𝑖 𝑥𝑖  and 𝑔𝑖𝑗  𝑥𝑖  by a piecewise linear function. 
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Method of Feasible Directions 

A modification of the method of steepest descent, the method of 

feasible directions, can be used to solve NLPs with linear constraints. 

max 𝑧 = 𝑓 𝐱  

𝐀𝐱 ≤ 𝐛 

𝐱 ≥ 𝟎 

We assume that 𝑓 𝐱  is a concave function. 
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Method of Feasible Directions 

We start with 𝐱0 that satisfies the constraints and try to find a direction 

in which we can move away from 𝐱0 which has the following properties: 

 When we move away from 𝐱0, we remain feasible. 

 When we move away from 𝐱0, we increase 𝑧. 
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Method of Feasible Directions 

We choose to move away from 𝐱0 in a direction 𝐝0 − 𝐱0, where 𝐝0 is an 

optimal solution to the following LP: 

max 𝑧 = ∇𝑓 𝐱0 ∙ 𝐝 

𝐀𝐝 ≤ 𝐛 

𝐝 ≥ 𝟎 

We now choose our new point 𝐱1 = 𝐱0 + 𝑡0 𝐝0 − 𝐱0  where 𝑡0 solves 

max 𝑓 𝐱0 + 𝑡0 𝐝0 − 𝐱0   

0 ≤ 𝑡0 ≤ 1 
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Pareto Optimality 

Step 1: Choose an objective (say objective 1) and determine the best 

value of this objective that can be attained (call it 𝑣1). For this best 

solution, find the value of objective 2 (call it 𝑣2).  𝑣1 , 𝑣2  is then a point 

on the trade-off curve. 

Step 2: For values 𝑣 of objective 2 that are better than 𝑣2, solve the 

optimization problem in Step (1) with the additional constraint: The 

value of objective 2 is at least as good as 𝑣. Varying 𝑣 will give you other 

points on the trade-off curve. 

Step 3: In Step 1, we obtained one end point of the trade-off curve. If 

we determine the best value of objective 2 that can be attained, we 

obtain the other end point of the trade-off curve. 
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The End 
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