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Introduction 

Dynamic Programming (DP) is a technique that can be used to solve 

many optimization problems. In most applications, DP obtains solutions 

by working backward from the end of a problem toward the beginning, 

thus breaking up a large, unwieldy problem into a series of smaller, 

more tractable problems. 

DP Terminology: 

Stage     : 𝑡 
State     : 𝑠𝑡  
Decision Variables   : 𝑥𝑡  
Optimal Decision or Policy  : 𝑥𝑡

∗ 𝑠𝑡  

State Transformation Function  : 𝑡𝑡 𝑠𝑡 , 𝑥𝑡
∗ 𝑠𝑡   

Optimal Value or Objective Function : 𝑓𝑡
∗ 𝑠𝑡  

Immediate Contribution Function : 𝑐𝑡 𝑠𝑡 , 𝑥𝑡  
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Example: A Shortest Path Problem 

Joe Cougar lives in New York City, but he plans to drive to Los Angeles to 

seek fame and fortune. Joe’s funds are limited, so he has decided to 

spend each night on his trip at a friend’s house. Joe has friends in 

Columbus, Nashville, Louisville, Kansas City, Omaha, Dallas, San Antonio, 

and Denver. Joe knows that after one day’s drive he can reach 

Columbus, Nashville, or Louisville. After two days of driving, he can 

reach Kansas City, Omaha, or Dallas. After three days of driving, he can 

reach San Antonio or Denver. Finally, after four days of driving, he can 

reach Los Angeles. To minimize the number of miles traveled, where 

should Joe spend each night of the trip? The actual road mileages 

between cities are given in the below figure. 
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Example: A Shortest Path Problem 
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Example: A Shortest Path Problem 

If we let, 

𝑐𝑖𝑗 = the road mileages between city 𝑖 and 𝑗 

𝑓𝑡 𝑖 = the length of the shortest path from city 𝑖 to Los Angeles, given 

that city 𝑖 is a stage 𝑡 city 

 

Stage 4 Computations: 

𝑓4 8 = 1,030 

𝑓4 9 = 1,390 
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Example: A Shortest Path Problem 

Stage 3 Computations: 

𝑓3 5 = min  
𝑐58 + 𝑓4 8 = 610 + 1,030 = 1,640

𝑐59 + 𝑓4 9 = 790 + 1,390 = 2,180
 ⇒ 𝑥3 5 = 8 

𝑓3 6 = min  
𝑐68 + 𝑓4 8 = 540 + 1,030 = 1,570

𝑐69 + 𝑓4 9 = 940 + 1,390 = 2,330
 ⇒ 𝑥3 6 = 8 

𝑓3 7 = min  
𝑐78 + 𝑓4 8 = 790 + 1,030 = 1,820

𝑐79 + 𝑓4 9 = 270 + 1,390 = 1,660
 ⇒ 𝑥3 7 = 9 
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Example: A Shortest Path Problem 

Stage 2 Computations: 

𝑓2 2 = min 

𝑐25 + 𝑓3 5 = 680 + 1,640 = 2,320

𝑐26 + 𝑓3 6 = 790 + 1,570 = 2,360

𝑐27 + 𝑓3 7 = 1,050 + 1,660 = 2,710

 ⇒ 𝑥2 2 = 5 

𝑓2 3 = min 

𝑐35 + 𝑓3 5 = 580 + 1,640 = 2,220

𝑐36 + 𝑓3 6 = 760 + 1,570 = 2,330

𝑐37 + 𝑓3 7 = 660 + 1,660 = 2,320

 ⇒ 𝑥2 3 = 5 

𝑓2 4 = min 

𝑐45 + 𝑓3 5 = 510 + 1,640 = 2,150

𝑐46 + 𝑓3 6 = 700 + 1,570 = 2,270

𝑐47 + 𝑓3 7 = 830 + 1,660 = 2,490

 ⇒ 𝑥2 4 = 5 
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Example: A Shortest Path Problem 

Stage 1 Computations: 

𝑓1 1 = min 

𝑐12 + 𝑓2 2 = 550 + 2,320 = 2,870

𝑐13 + 𝑓2 3 = 900 + 2,220 = 3,120

𝑐14 + 𝑓2 4 = 770 + 2,150 = 2,920

 ⇒ 𝑥1 1 = 2 

 

Optimal Path 

𝑥1 1 = 2; 𝑥2 2 = 5; 𝑥3 5 = 8; 𝑥4 8 = 10 ⇒ 1 − 2 − 5 − 8 − 10; 
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Computational Efficiency 

For the example, it would have been an easy matter to determine the 

shortest path from New York to Los Angeles by enumerating all the 

possible paths (there are only (3)(3)(2) = 18 paths). Thus, in this 

problem, the use of dynamic programming did not really serve much 

purpose. For larger networks, however, dynamic programming is much 

more efficient for determining a shortest path than the explicit 

enumeration of all paths. To see this, consider the network in Figure 2. 

In this network, it is possible to travel from any node in stage 𝑘 to any 

node in stage 𝑘 + 1. Let the distance between node 𝑖 and node 𝑗 be 𝑐𝑖𝑗 .  
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Computational Efficiency 
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Computational Efficiency 

Suppose we want to determine the shortest path from node 1 to node 

27. If you solve this problem by explicit enumeration of all paths, there 

are 55  possible paths from node 1 to node 27. It takes five additions to 

determine the length of each path. Thus, explicitly enumerating the 

length of all paths requires 55 × 5 = 56 = 16,625 additions. When we 

use DP for the above example, 

 Computation of 𝑓5 ∙ , 𝑓4 ∙ , 𝑓3 ∙  and 𝑓2 ∙  requires 5 × 5 = 25 

additions. 

 Computation of 𝑓1 ∙  requires 5 additions. 

 Thus, DP requires 4 x 25 + 5 = 105 additions to find the shortest 

path from node 1 to node 27 
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Characteristics of DP 

Characteristic 1: The problem can be divided into stages with a decision 

required at each stage. 

Characteristic 2: Each stage has a number of states associated with it. By 

a state, we mean the information that is needed at any stage to make 

an optimal decision. 

Characteristic 3: The decision chosen at any stage describes how the 

state at the current stage is transformed into the state at the next stage. 
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Characteristics of DP 

Characteristic 4: Given the current state, the optimal decision for each 

of the remaining stages must not depend on previously reached states 

or previously chosen decisions. This idea is known as the principle of 

optimality. 

Characteristic 5: If the states for the problem have been classified into 

one of 𝑇 stages, there must be a recursion that relates the cost or 

reward earned during stages 𝑡, 𝑡 + 1, …, 𝑇 to the cost or reward earned 

from stages 𝑡 + 1, 𝑡 + 2, …, 𝑇. In essence, the recursion formalizes the 

working-backward procedure. 
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Example DP Formulations 

The owner of a lake must decide how many fishes to catch and sell each 

year. If she sells 𝑥 fishes during year 𝑡, then a revenue 𝑟 𝑥  is earned. 

The cost of catching 𝑥 fishes during a year is a function 𝑐 𝑥, 𝑏  of the 

number of fishes caught during the year and of 𝑏, the number of fishes 

in the lake at the beginning of the year. Of course, fishes do reproduce. 

To model this, we assume that the number of fishes in the lake at the 

beginning of a year is 20% more than the number of fishes left in the 

lake at the end of the previous year. Assume that there are 10,000 

fishes in the lake at the beginning of the first year. Develop a dynamic 

programming recursion that can be used to maximize the owner’s net 

profits over a 𝑇-year horizon. 
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Example DP Formulations 

𝑥𝑡 = the number of fishes caught during year 𝑡 

𝑏𝑡 = the number of fishes in the lake at the beginning of year 𝑡 

𝑓𝑡 𝑏𝑡 = the maximum net profit that can be earned from fishes caught 

during years 𝑡, 𝑡 + 1,… , 𝑇 given that the number of fishes in the lake at 

the beginning of year 𝑡 is 𝑏𝑡  

 

𝑓𝑇 𝑏𝑇 = max
𝑥𝑇

 𝑟 𝑥𝑇 − 𝑐 𝑥𝑇 , 𝑏𝑇  ; 0 ≤ 𝑥𝑇 ≤ 𝑏𝑇 

𝑓𝑡 𝑏𝑡 = max 𝑟 𝑥𝑡 − 𝑐 𝑥𝑡 , 𝑏𝑡 + 𝑓𝑡+1 1.2 𝑏𝑡 − 𝑥𝑡   ; 0 ≤ 𝑥𝑡 ≤ 𝑏𝑡  
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Example DP Formulations 

A company knows that the demand for its product during each of the 

next four months will be as follows: month 1, 1 unit; month 2, 3 units; 

month 3, 2 units; month 4, 4 units. At the beginning of each month, the 

company must determine how many units should be produced during 

the current month. During a month in which any units are produced, a 

setup cost of $3 is incurred. In addition, there is a variable cost of $1 for 

every unit produced. At the end of each month, a holding cost of 50¢ 

per unit on hand is incurred. Capacity limitations allow a maximum of 5 

units to be produced during each month. The size of the company’s 

warehouse restricts the ending inventory for each month to 4 units at 

most. The company wants to determine a production schedule that will 

meet all demands on time and will minimize the sum of production and 

holding costs during the four months. Assume that 0 units are on hand 

at the beginning of the first month. 
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Example DP Formulations 

𝑓𝑡 𝑖 = the minimum cost of meeting demands for months 𝑡, 𝑡 + 1,… ,4 

if 𝑖 units are on hand at the beginning of month 𝑡 

𝑐 𝑥 = the cost of producing 𝑥 units during a month 

𝑥𝑡 𝑖 = the production level during month 𝑡 that minimizes the total 

cost during months 𝑡, 𝑡 + 1,… ,4 if 𝑖 units are on hand at the beginning 

of month 𝑡 
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Example DP Formulations 

Stage 4 (Month 4) Computations: 

𝑓4 𝑖 = 𝑐 4 − 𝑖 ; 𝑖 = 0,1, … ,4 

We have, 

𝑓4 0 = 𝑐 4 − 0 = 𝑐 4 = 3 + 4 = 7 ⇒ 𝑥4 0 = 4 − 0 = 4 

𝑓4 1 = 𝑐 4 − 1 = 𝑐 3 = 3 + 3 = 6 ⇒ 𝑥4 1 = 4 − 1 = 3 

𝑓4 2 = 𝑐 4 − 2 = 𝑐 2 = 3 + 2 = 5 ⇒ 𝑥4 2 = 4 − 2 = 2 

𝑓4 3 = 𝑐 4 − 3 = 𝑐 1 = 3 + 1 = 4 ⇒ 𝑥4 3 = 4 − 3 = 1 

𝑓4 4 = 𝑐 4 − 0 = 𝑐 0 = 0 + 0 = 0 ⇒ 𝑥4 4 = 4 − 4 = 0 
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Example DP Formulations 

We can summarize the results in the following table. 

𝑖 𝑥 𝑓4 𝑖  𝑥4 𝑖  
0 4 7 4 
1 3 6 3 
2 2 5 2 
3 1 4 1 
4 0 0 0 
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Example DP Formulations 

Stage 3 (Month 3) Computations: 

𝑓3 𝑖 = min
𝑥

 
𝑖 + 𝑥 − 2

2
+ 𝑐 𝑥 + 𝑓4 𝑖 + 𝑥 − 2  ;

𝑖 = 0,… ,4
𝑥 ∈  0,… ,5 

0 ≤ 𝑖 + 𝑥 − 2 ≤ 4
 

𝑓3 0 = min
𝑥∈ 2,3,4,5 

 
0 + 𝑥 − 2

2
+ 𝑐 𝑥 + 𝑓4 0 + 𝑥 − 2   

= min
𝑥∈ 2,3,4,5 

 
 
 

 
 

0 + 5 + 7 = 12
1

2
+ 6 + 6 =

25

2
1 + 7 + 5 = 13
3

2
+ 8 + 4 =

27

2  
 
 

 
 

= 12 ⇒ 𝑥3 0 = 2 

Computations continue similarly. 
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Example DP Formulations 

𝑖 𝑥 𝑖 + 𝑥 − 2 
𝑖 + 𝑥 − 2

2
+ 𝑐 𝑥 + 𝑓4 𝑖 + 𝑥 − 2  𝑓3 𝑖  𝑥3 𝑖  

0 2 0 12.0  12.0 2 
0 3 1 12.5    
0 4 2 13.0    
0 5 3 13.5    

1 1 0 11.0    
1 2 1 11.5    
1 3 2 12.0    
1 4 3 12.5    
1 5 4 10.0  10.0 5 

2 0 0 7.0  7.0 0 
2 1 1 10.5    
2 2 2 11.0    
2 3 3 11.5    
2 4 4 9.0    

3 0 1 6.5  6.5 0 
3 1 2 10.0    
3 2 3 10.5    
3 3 4 8.0    

4 0 2 6.0  6.0 0 
4 1 3 9.5    
4 2 4 7.0    
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Example DP Formulations 

Stage 2 (Month 2) Computations: 

𝑓2 𝑖 = min
𝑥

 
𝑖 + 𝑥 − 3

2
+ 𝑐 𝑥 + 𝑓3 𝑖 + 𝑥 − 3  ;

𝑖 = 0,1, … ,4
𝑥 ∈  0, … ,5 

0 ≤ 𝑖 + 𝑥 − 3 ≤ 4
 

𝑓2 0 = min
𝑥∈ 3,4,5 

 
0 + 𝑥 − 3

2
+ 𝑐 𝑥 + 𝑓3 𝑖 + 𝑥 − 3   

= min
𝑥∈ 3,4,5 

 

0 + 6 + 12 = 18
1

2
+ 7 + 10 =

35

2
1 + 8 + 7 = 16

 = 16 ⇒ 𝑥2 0 = 5 

Computations continue similarly. 
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Example DP Formulations 

𝑖 𝑥 𝑖 + 𝑥 − 3 
𝑖 + 𝑥 − 3

2
+ 𝑐 𝑥 + 𝑓3 𝑖 + 𝑥 − 3  𝑓2 𝑖  𝑥2 𝑖  

0 3 0 18.0    
0 4 1 17.5    
0 5 2 16.0  16.0 5 

1 2 0 17.0    
1 3 1 16.5    
1 4 2 15.0  15.0 4 
1 5 3 16.0    

2 1 0 16.0    
2 2 0 15.5    
2 3 2 14.0  14.0 3 
2 4 3 15.0    
2 5 4 16.0    

3 0 0 12.0  12.0 0 
2 1 0 14.5    
3 2 2 13.0    
3 3 3 14.0    
3 4 4 15.0    

4 0 1 10.5  10.5 0 
4 1 2 12.0    
4 2 3 13.0    
4 3 4 14.0    
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Example DP Formulations 

Stage 1 (Month 1) Computations: 

𝑓1 𝑖 = min
𝑥

 
𝑖 + 𝑥 − 1

2
+ 𝑐 𝑥 + 𝑓2 𝑖 + 𝑥 − 1  ;

𝑖 = 0,… ,4;
𝑥 ∈  0,… ,5 

0 ≤ 𝑖 + 𝑥 − 1 ≤ 4
 

𝑓1 0 = min
𝑥∈ 1,2,3,4,5 

 
0 + 𝑥 − 1

2
+ 𝑐 𝑥 + 𝑓2 𝑖 + 𝑥 − 1   

= min
𝑥∈ 1,2,3,4,5 

 
 
 
 

 
 
 

0 + 4 + 16 = 20
1

2
+ 5 + 15 =

41

2
1 + 6 + 14 = 21
3

2
+ 7 + 12 =

41

2

2 + 8 +
21

2
=

41

2  
 
 
 

 
 
 

= 20 ⇒ 𝑥1 0 = 1 

Computations continue similarly. 
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Example DP Formulations 

𝑖 𝑥 𝑖 + 𝑥 − 1 
𝑖 + 𝑥 − 1

2
+ 𝑐 𝑥 + 𝑓2 𝑖 + 𝑥 − 1  𝑓1 𝑖  𝑥1 𝑖  

0 1 0 20.0  20.0 1 
0 2 1 20.5    
0 3 2 21.0    
0 4 3 20.5    
0 5 4 20.5    

1 0 0 16.0  16.0 0 
1 1 1 19.5    
1 2 2 20.0    
1 3 3 19.5    
1 4 4 19.5    

2 0 1 15.5  15.5 0 
2 1 2 19.0    
2 2 3 18.5    
2 3 4 18.5    

3 0 2 15.0  15.0 0 
3 1 3 17.5    
3 2 4 17.5    

4 0 3 13.5  13.5 0 
4 1 4 16.5    
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Example DP Formulations 

Determination of the Optimal Production Schedule 

Since the initial inventory is 0 units, the minimum cost for the 4-month 

period will be 

𝑓1 0 = 20 ⇒ 𝑥1 0 = 1 

𝑓2 0 = 16 ⇒ 𝑥2 0 = 5 

𝑓3 2 = 7 ⇒ 𝑥3 2 = 0 

𝑓4 0 = 7 ⇒ 𝑥4 0 = 4 

Thus, we should produce 1 unit during month 1, 5 units during month 2, 

0 units during month 3 and 4 units during month 4 with a total cost of 

20. 
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Example DP Formulations 
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Resource Allocation Problems 

Assume that we have 𝑤 units of available resource and 𝑇 activities to 

which the resource can be allocated. If activity 𝑡 is implemented at level 

𝑥𝑡  (non-negative integer), then, 𝑔𝑡 𝑥𝑡  units of resource are used by the 

activity, and a benefit 𝑟𝑡 𝑥𝑡  is obtained. The problem of determining 

the allocation of resources that maximizes the total benefit subject to 

the limited resource availability may be written as 

max 𝑧 =  𝑟𝑡 𝑥𝑡 

𝑇

𝑡=1

 

 𝑔𝑡 𝑥𝑡 

𝑇

𝑡=1

≤ 𝑤 

𝑥𝑡 ∈ {0,1,2, … } 
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Resource Allocation Problems 

To solve the above problem by DP, we let 

𝑓𝑡 𝑑 = the maximum benefit that can be obtained from activities 

𝑡, 𝑡 + 1,… , 𝑇 if 𝑑 units of the resource are available for activities 

𝑡, 𝑡 + 1,… , 𝑇. 

Thus, we can write 

𝑓𝑇+1 𝑑 = 0; ∀𝑑 

𝑓𝑡 𝑑 = max 𝑟𝑡 𝑥𝑡 + 𝑓𝑡+1 𝑑 − 𝑔𝑡 𝑥𝑡   ; 𝑥𝑡 ∈  0,1,2, …  ; 𝑔𝑡 𝑥𝑡 ≤ 𝑑 
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The Knapsack Problem 

Suppose a 10-lb knapsack is to be filled with the items listed in the Table 

below. To maximize total benefit, how should the knapsack be filled? 

Item Weight Benefit 

1 4 11  
2 3 7  
3 5 12  

Table: Problem Data 
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The Knapsack Problem 

We let 

𝑓𝑡 𝑑 = the maximum benefit that can be earned from a 𝑑 −pound 

knapsack that is filled with items of type 𝑡, 𝑡 + 1,… ,3. 

We have, 

𝑟1 𝑥1 = 11𝑥1 ; 𝑟2 𝑥2 = 7𝑥2; 𝑟3 𝑥3 = 12𝑥3  

𝑔1 𝑥1 = 4𝑥1; 𝑔2 𝑥2 = 3𝑥2 ; 𝑔3 𝑥3 = 5𝑥3 
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The Knapsack Problem 

Stage 3 Computations: 

𝑓3 𝑑 = max
𝑥3

 12𝑥3 ; 𝑥𝑡 ∈  0,1,2, …  ; 5𝑥3 ≤ 𝑑 

𝑓3 10 = 24 ⇒ 𝑥3 10 = 2 

𝑓3 5 = 𝑓3 6 = ⋯ = 𝑓3 9 = 12 ⇒ 𝑥3 5 = 𝑥3 6 = ⋯ = 𝑥3 9 = 1 

𝑓3 0 = 𝑓3 1 = ⋯ = 𝑓3 4 = 0 ⇒ 𝑥3 0 = 𝑥3 1 = ⋯ = 𝑥3 4 = 0 

fatihcavdur@uludag.edu.tr 



The Knapsack Problem 

𝑓2 𝑑 = max
𝑥2

 7𝑥2 + 𝑓3 𝑑 − 3𝑥2  ; 𝑥𝑡 ∈  0,1,2, …  ; 3𝑥2 ≤ 𝑑 

𝑓2 10 = max

 
 

 
7 × 0 + 𝑓3 10 = 24

7 × 1 + 𝑓3 7 = 19

7 × 2 + 𝑓3 4 = 14

7 × 3 + 𝑓3 1 = 21  
 

 

= 24 ⇒ 𝑥2 10 = 0 
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The Knapsack Problem 

𝑓2 9 = max

 
 

 
7 × 0 + 𝑓3 9 = 12

7 × 1 + 𝑓3 6 = 19

7 × 2 + 𝑓3 3 = 14

7 × 3 + 𝑓3 3 = 21 
 

 

= 21 ⇒ 𝑥2 9 = 3 

𝑓2 8 = max  

7 × 0 + 𝑓3 8 = 12

7 × 1 + 𝑓3 5 = 19

7 × 2 + 𝑓3 2 = 14

 = 19 ⇒ 𝑥2 8 = 1 

𝑓2 7 = max  

7 × 0 + 𝑓3 7 = 12

7 × 1 + 𝑓3 4 = 7

7 × 2 + 𝑓3 1 = 14

 = 14 ⇒ 𝑥2 7 = 2 
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The Knapsack Problem 

𝑓2 6 = max  

7 × 0 + 𝑓3 6 = 12

7 × 1 + 𝑓3 3 = 7

7 × 2 + 𝑓3 0 = 14

 = 14 ⇒ 𝑥2 6 = 2 

𝑓2 5 = max  
7 × 0 + 𝑓3 5 = 12

7 × 1 + 𝑓3 2 = 7
 = 12 ⇒ 𝑥2 5 = 0 

𝑓2 4 = max  
7 × 0 + 𝑓3 4 = 0

7 × 1 + 𝑓3 1 = 7
 = 7 ⇒ 𝑥2 4 = 1 

𝑓2 3 = max  
7 × 0 + 𝑓3 3 = 0

7 × 1 + 𝑓3 0 = 7
 = 7 ⇒ 𝑥2 3 = 1 

𝑓2 2 = 7 × 0 + 𝑓3 2 = 0 ⇒ 𝑥2 2 = 0 

𝑓2 1 = 7 × 0 + 𝑓3 1 = 0 ⇒ 𝑥2 1 = 0 

𝑓2 0 = 7 × 0 + 𝑓3 0 = 0 ⇒ 𝑥2 0 = 0 
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The Knapsack Problem 

Stage 1 Computations: 

𝑓1 10 = max 

11 × 0 + 𝑓2 10 = 24

11 × 1 + 𝑓2 6 = 25

11 × 2 + 𝑓2 2 = 22

 = 25 ⇒ 𝑥1 10 = 1 

Thus, the optimal solution is including 1 type 1 item, 2 type 2 items and 

0 type 3 items as seen below: 

𝑓1 10 = 10 ⇒ 𝑥1 10 = 1 

𝑓2 6 = 14 ⇒ 𝑥2 6 = 2 

𝑓3 0 = 0 ⇒ 𝑥3 0 = 0 
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The Knapsack Problem 
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The Knapsack Problem 
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Another solution approach for the knapsack problem can be defined as 

follows: 

 𝑔 𝑤 = the max benefit obtained from a 𝑤-lb knapsack 

 𝑏𝑗 = benefit of item 𝑗 

 𝑤𝑗 = weight of item 𝑗 

We can write, for 𝑤 = 0, 𝑔 0 = 0, and for 𝑤 > 0, 

𝑔 𝑤 = max
𝑗
 𝑏𝑗 + 𝑔 𝑤 −𝑤𝑗    
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We can write, for 𝑤 = 0, 𝑔 0 = 0, and for 𝑤 > 0, 

𝑔 𝑤 = max
𝑗
 𝑏𝑗 + 𝑔 𝑤 −𝑤𝑗    

We can then write 

𝑔 0 = 𝑔 1 = 𝑔 2 = 0 ⇒ 𝑥 0 = 𝑥 1 = 𝑥 2 = 0 

𝑔 3 = 7 ⇒ 𝑥 3 = 2 

𝑔 4 = max  
11 + 𝑔 0 = 11

7 + 𝑔 1 = 7
 = 11 ⇒ 𝑥 4 = 1 

𝑔 5 = max 

11 + 𝑔 1 = 11

7 + 𝑔 2 = 7

12 + 𝑔 0 = 12

 = 12 ⇒ 𝑥 5 = 3 
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𝑔 5 = max 

11 + 𝑔 1 = 11

7 + 𝑔 2 = 7

12 + 𝑔 0 = 12

 = 12 ⇒ 𝑥 5 = 3 

𝑔 6 = max 

11 + 𝑔 2 = 11

7 + 𝑔 3 = 14

12 + 𝑔 1 = 12

 = 14 ⇒ 𝑥 5 = 2 

If we continue similarly, 

𝑔 10 = max 

11 + 𝑔 6 = 25

7 + 𝑔 7 = 25

12 + 𝑔 5 = 24

 = 25 ⇒ 𝑥 10 = 1 ∨ 2 

Hence, one of the optimal solutions is to fill the knapsack as Type 1-

Type 2-Type 2 since 𝑥 10 = 1, 𝑥 5 = 2, 𝑥 3 = 2. 
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In a knapsack problem, if we let 𝑏𝑖  and 𝑤𝑖  as the benefit and weight of 

item 𝑖, respectively, we can show that, at least one type 𝑖 item will be 

used if 𝑤 ≥ 𝑤∗ where 

𝑤∗ =
𝑏𝑖𝑤𝑖

𝑏𝑖 −𝑤𝑖  
𝑏𝑗
𝑤𝑗
 

 

and 

𝑏𝑖
𝑤𝑖

>
𝑏𝑗

𝑤𝑗
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For example, consider the following knapsack problem. 

max 𝑧 = 16𝑥1 + 22𝑥2 + 12𝑥3 + 8𝑥4 

5𝑥1 + 7𝑥2 + 5𝑥3 + 4𝑥4 ≤ 𝑤 

𝑥𝑖 ∈ 𝑍
+ ∀𝑖 

We can say that at least one Type 1 item will be in the knapsack if 

𝑤 ≥
 16  5 

16 −  5  
22
7
 

= 280 

This result, referred as a turnpike theorem, can greatly reduce the 

necessary computations to solve a knapsack problem. 



The Travelling Salesman Problem 

It’s the last weekend of the 2004 election campaign, and candidate 

Walter Glenn is in New York City. Before Election Day, Walter must visit 

Miami, Dallas, and Chicago and then return to his New York City 

headquarters. Walter wants to minimize the total distance he must 

travel. In what order should he visit the cities? The distances in miles 

between the four cities are given in the Table below. 

from/to NY Miami Dallas Chicago 

NY - 1,334 1,559 809 
Miami  - 1,343 1,397 
Dallas   - 921 
Chicago    - 

Table: Problem Data 
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The Travelling Salesman Problem 

𝑐𝑖𝑗 = the distance between cities 𝑖 and 𝑗 

𝑓𝑡 𝑖, 𝑆 = the minimum distance that must be traveled to complete a 

tour if the 𝑡 − 1 cities in the set 𝑆 have been visited and city 𝑖 was the 

last city visited 

For 𝑡 = 4, 

𝑓4 2,  2,3,4  = 𝑐21 = 1,334 

𝑓4 3,  2,3,4  = 𝑐31 = 1,559 

𝑓4 4,  2,3,4  = 𝑐41 = 809 

For 𝑡 = 1,2,3, 

𝑓𝑡 𝑖, 𝑆 = min
𝑗∉𝑆⋀𝑗≠1

 𝑐𝑖𝑗 + 𝑓𝑡+1 𝑗, 𝑆 ∪  𝑗   ; 𝑡 = 1,2,3 
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The Travelling Salesman Problem 

Stage 3 Computations: 

𝑓3 2,  2,3  = 𝑐24 + 𝑓4 4,  2,3,4  = 1,397 + 809 = 2,206 

𝑓3 3,  2,3  = 𝑐34 + 𝑓4 4,  2,3,4  = 921 + 809 = 1,730 

𝑓3 2,  2,4  = 𝑐23 + 𝑓4 3,  2,3,4  = 1,343 + 1,559 = 2,902 

𝑓3 4,  2,4  = 𝑐43 + 𝑓4 3,  2,3,4  = 921 + 1,559 = 2,480 

𝑓3 3,  3,4  = 𝑐32 + 𝑓4 2,  2,3,4  = 1,343 + 1,334 = 2,677 

𝑓3 4,  3,4  = 𝑐42 + 𝑓4 2,  2,3,4  = 1,397 + 1,334 = 2,731 
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The Travelling Salesman Problem 

Stage 2 Computations: 

𝑓2 2,  2  = min  
𝑐23 + 𝑓3 3,  2,3  = 1,343 + 1,730 = 3,073

𝑐24 + 𝑓3 4,  2,4  = 1,397 + 2,480 = 3,877
  

𝑓2 3,  3  = min  
𝑐34 + 𝑓3 4,  3,4  = 921 + 2,731 = 3,652

𝑐32 + 𝑓3 2,  2,3  = 1,343 + 2,206 = 3,549
  

𝑓2 4,  4  = min  
𝑐42 + 𝑓3 2,  2,4  = 1,397 + 2,902 = 4,299

𝑐43 + 𝑓3 3,  3,4  = 921 + 2,677 = 3,598
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The Travelling Salesman Problem 

Stage 1 Computations: 

𝑓1 1,  ∙  = min 

𝑐12 + 𝑓2 2,  2  = 1,334 + 3,073 = 4,407

𝑐13 + 𝑓2 3,  3  = 1,559 + 3,549 = 5,108

𝑐14 + 𝑓2 4,  4  = 809 + 3,598 = 4,407

  

 

The (alternative) optimal tour is City 1 (NY) – City 4 (Chicago) – City 3 

(Dallas) – City 2 (Miami) with length of 𝑓1 1,  ∙  = 4,407. 
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The End 
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