
Deterministic Dynamic
Programming

Fatih Cavdur

fatihcavdur@uludag.edu.tr

Introduction

Dynamic Programming (DP) is a technique that can be used to solve

many optimization problems. In most applications, DP obtains solutions

by working backward from the end of a problem toward the beginning,

thus breaking up a large, unwieldy problem into a series of smaller,

more tractable problems.

DP Terminology:

Stage : 𝑡
State : 𝑠𝑡
Decision Variables : 𝑥𝑡
Optimal Decision or Policy : 𝑥𝑡

∗ 𝑠𝑡

State Transformation Function : 𝑡𝑡 𝑠𝑡 , 𝑥𝑡
∗ 𝑠𝑡

Optimal Value or Objective Function : 𝑓𝑡
∗ 𝑠𝑡

Immediate Contribution Function : 𝑐𝑡 𝑠𝑡 , 𝑥𝑡

fatihcavdur@uludag.edu.tr

Example: A Shortest Path Problem

Joe Cougar lives in New York City, but he plans to drive to Los Angeles to

seek fame and fortune. Joe’s funds are limited, so he has decided to

spend each night on his trip at a friend’s house. Joe has friends in

Columbus, Nashville, Louisville, Kansas City, Omaha, Dallas, San Antonio,

and Denver. Joe knows that after one day’s drive he can reach

Columbus, Nashville, or Louisville. After two days of driving, he can

reach Kansas City, Omaha, or Dallas. After three days of driving, he can

reach San Antonio or Denver. Finally, after four days of driving, he can

reach Los Angeles. To minimize the number of miles traveled, where

should Joe spend each night of the trip? The actual road mileages

between cities are given in the below figure.

fatihcavdur@uludag.edu.tr

Example: A Shortest Path Problem

fatihcavdur@uludag.edu.tr

Example: A Shortest Path Problem

If we let,

𝑐𝑖𝑗 = the road mileages between city 𝑖 and 𝑗

𝑓𝑡 𝑖 = the length of the shortest path from city 𝑖 to Los Angeles, given

that city 𝑖 is a stage 𝑡 city

Stage 4 Computations:

𝑓4 8 = 1,030

𝑓4 9 = 1,390

fatihcavdur@uludag.edu.tr

Example: A Shortest Path Problem

Stage 3 Computations:

𝑓3 5 = min
𝑐58 + 𝑓4 8 = 610 + 1,030 = 1,640

𝑐59 + 𝑓4 9 = 790 + 1,390 = 2,180
 ⇒ 𝑥3 5 = 8

𝑓3 6 = min
𝑐68 + 𝑓4 8 = 540 + 1,030 = 1,570

𝑐69 + 𝑓4 9 = 940 + 1,390 = 2,330
 ⇒ 𝑥3 6 = 8

𝑓3 7 = min
𝑐78 + 𝑓4 8 = 790 + 1,030 = 1,820

𝑐79 + 𝑓4 9 = 270 + 1,390 = 1,660
 ⇒ 𝑥3 7 = 9

fatihcavdur@uludag.edu.tr

Example: A Shortest Path Problem

Stage 2 Computations:

𝑓2 2 = min

𝑐25 + 𝑓3 5 = 680 + 1,640 = 2,320

𝑐26 + 𝑓3 6 = 790 + 1,570 = 2,360

𝑐27 + 𝑓3 7 = 1,050 + 1,660 = 2,710

 ⇒ 𝑥2 2 = 5

𝑓2 3 = min

𝑐35 + 𝑓3 5 = 580 + 1,640 = 2,220

𝑐36 + 𝑓3 6 = 760 + 1,570 = 2,330

𝑐37 + 𝑓3 7 = 660 + 1,660 = 2,320

 ⇒ 𝑥2 3 = 5

𝑓2 4 = min

𝑐45 + 𝑓3 5 = 510 + 1,640 = 2,150

𝑐46 + 𝑓3 6 = 700 + 1,570 = 2,270

𝑐47 + 𝑓3 7 = 830 + 1,660 = 2,490

 ⇒ 𝑥2 4 = 5

fatihcavdur@uludag.edu.tr

Example: A Shortest Path Problem

Stage 1 Computations:

𝑓1 1 = min

𝑐12 + 𝑓2 2 = 550 + 2,320 = 2,870

𝑐13 + 𝑓2 3 = 900 + 2,220 = 3,120

𝑐14 + 𝑓2 4 = 770 + 2,150 = 2,920

 ⇒ 𝑥1 1 = 2

Optimal Path

𝑥1 1 = 2; 𝑥2 2 = 5; 𝑥3 5 = 8; 𝑥4 8 = 10 ⇒ 1 − 2 − 5 − 8 − 10;

fatihcavdur@uludag.edu.tr

Computational Efficiency

For the example, it would have been an easy matter to determine the

shortest path from New York to Los Angeles by enumerating all the

possible paths (there are only (3)(3)(2) = 18 paths). Thus, in this

problem, the use of dynamic programming did not really serve much

purpose. For larger networks, however, dynamic programming is much

more efficient for determining a shortest path than the explicit

enumeration of all paths. To see this, consider the network in Figure 2.

In this network, it is possible to travel from any node in stage 𝑘 to any

node in stage 𝑘 + 1. Let the distance between node 𝑖 and node 𝑗 be 𝑐𝑖𝑗 .

fatihcavdur@uludag.edu.tr

Computational Efficiency

fatihcavdur@uludag.edu.tr

Computational Efficiency

Suppose we want to determine the shortest path from node 1 to node

27. If you solve this problem by explicit enumeration of all paths, there

are 55 possible paths from node 1 to node 27. It takes five additions to

determine the length of each path. Thus, explicitly enumerating the

length of all paths requires 55 × 5 = 56 = 16,625 additions. When we

use DP for the above example,

 Computation of 𝑓5 ∙ , 𝑓4 ∙ , 𝑓3 ∙ and 𝑓2 ∙ requires 5 × 5 = 25

additions.

 Computation of 𝑓1 ∙ requires 5 additions.

 Thus, DP requires 4 x 25 + 5 = 105 additions to find the shortest

path from node 1 to node 27

fatihcavdur@uludag.edu.tr

Characteristics of DP

Characteristic 1: The problem can be divided into stages with a decision

required at each stage.

Characteristic 2: Each stage has a number of states associated with it. By

a state, we mean the information that is needed at any stage to make

an optimal decision.

Characteristic 3: The decision chosen at any stage describes how the

state at the current stage is transformed into the state at the next stage.

fatihcavdur@uludag.edu.tr

Characteristics of DP

Characteristic 4: Given the current state, the optimal decision for each

of the remaining stages must not depend on previously reached states

or previously chosen decisions. This idea is known as the principle of

optimality.

Characteristic 5: If the states for the problem have been classified into

one of 𝑇 stages, there must be a recursion that relates the cost or

reward earned during stages 𝑡, 𝑡 + 1, …, 𝑇 to the cost or reward earned

from stages 𝑡 + 1, 𝑡 + 2, …, 𝑇. In essence, the recursion formalizes the

working-backward procedure.

fatihcavdur@uludag.edu.tr

Example DP Formulations

The owner of a lake must decide how many fishes to catch and sell each

year. If she sells 𝑥 fishes during year 𝑡, then a revenue 𝑟 𝑥 is earned.

The cost of catching 𝑥 fishes during a year is a function 𝑐 𝑥, 𝑏 of the

number of fishes caught during the year and of 𝑏, the number of fishes

in the lake at the beginning of the year. Of course, fishes do reproduce.

To model this, we assume that the number of fishes in the lake at the

beginning of a year is 20% more than the number of fishes left in the

lake at the end of the previous year. Assume that there are 10,000

fishes in the lake at the beginning of the first year. Develop a dynamic

programming recursion that can be used to maximize the owner’s net

profits over a 𝑇-year horizon.

fatihcavdur@uludag.edu.tr

Example DP Formulations

𝑥𝑡 = the number of fishes caught during year 𝑡

𝑏𝑡 = the number of fishes in the lake at the beginning of year 𝑡

𝑓𝑡 𝑏𝑡 = the maximum net profit that can be earned from fishes caught

during years 𝑡, 𝑡 + 1,… , 𝑇 given that the number of fishes in the lake at

the beginning of year 𝑡 is 𝑏𝑡

𝑓𝑇 𝑏𝑇 = max
𝑥𝑇

 𝑟 𝑥𝑇 − 𝑐 𝑥𝑇 , 𝑏𝑇 ; 0 ≤ 𝑥𝑇 ≤ 𝑏𝑇

𝑓𝑡 𝑏𝑡 = max 𝑟 𝑥𝑡 − 𝑐 𝑥𝑡 , 𝑏𝑡 + 𝑓𝑡+1 1.2 𝑏𝑡 − 𝑥𝑡 ; 0 ≤ 𝑥𝑡 ≤ 𝑏𝑡

fatihcavdur@uludag.edu.tr

Example DP Formulations

A company knows that the demand for its product during each of the

next four months will be as follows: month 1, 1 unit; month 2, 3 units;

month 3, 2 units; month 4, 4 units. At the beginning of each month, the

company must determine how many units should be produced during

the current month. During a month in which any units are produced, a

setup cost of $3 is incurred. In addition, there is a variable cost of $1 for

every unit produced. At the end of each month, a holding cost of 50¢

per unit on hand is incurred. Capacity limitations allow a maximum of 5

units to be produced during each month. The size of the company’s

warehouse restricts the ending inventory for each month to 4 units at

most. The company wants to determine a production schedule that will

meet all demands on time and will minimize the sum of production and

holding costs during the four months. Assume that 0 units are on hand

at the beginning of the first month.

fatihcavdur@uludag.edu.tr

Example DP Formulations

𝑓𝑡 𝑖 = the minimum cost of meeting demands for months 𝑡, 𝑡 + 1,… ,4

if 𝑖 units are on hand at the beginning of month 𝑡

𝑐 𝑥 = the cost of producing 𝑥 units during a month

𝑥𝑡 𝑖 = the production level during month 𝑡 that minimizes the total

cost during months 𝑡, 𝑡 + 1,… ,4 if 𝑖 units are on hand at the beginning

of month 𝑡

fatihcavdur@uludag.edu.tr

Example DP Formulations

Stage 4 (Month 4) Computations:

𝑓4 𝑖 = 𝑐 4 − 𝑖 ; 𝑖 = 0,1, … ,4

We have,

𝑓4 0 = 𝑐 4 − 0 = 𝑐 4 = 3 + 4 = 7 ⇒ 𝑥4 0 = 4 − 0 = 4

𝑓4 1 = 𝑐 4 − 1 = 𝑐 3 = 3 + 3 = 6 ⇒ 𝑥4 1 = 4 − 1 = 3

𝑓4 2 = 𝑐 4 − 2 = 𝑐 2 = 3 + 2 = 5 ⇒ 𝑥4 2 = 4 − 2 = 2

𝑓4 3 = 𝑐 4 − 3 = 𝑐 1 = 3 + 1 = 4 ⇒ 𝑥4 3 = 4 − 3 = 1

𝑓4 4 = 𝑐 4 − 0 = 𝑐 0 = 0 + 0 = 0 ⇒ 𝑥4 4 = 4 − 4 = 0

fatihcavdur@uludag.edu.tr

Example DP Formulations

We can summarize the results in the following table.

𝑖 𝑥 𝑓4 𝑖 𝑥4 𝑖
0 4 7 4
1 3 6 3
2 2 5 2
3 1 4 1
4 0 0 0

fatihcavdur@uludag.edu.tr

Example DP Formulations

Stage 3 (Month 3) Computations:

𝑓3 𝑖 = min
𝑥

𝑖 + 𝑥 − 2

2
+ 𝑐 𝑥 + 𝑓4 𝑖 + 𝑥 − 2 ;

𝑖 = 0,… ,4
𝑥 ∈ 0,… ,5

0 ≤ 𝑖 + 𝑥 − 2 ≤ 4

𝑓3 0 = min
𝑥∈ 2,3,4,5

0 + 𝑥 − 2

2
+ 𝑐 𝑥 + 𝑓4 0 + 𝑥 − 2

= min
𝑥∈ 2,3,4,5

0 + 5 + 7 = 12
1

2
+ 6 + 6 =

25

2
1 + 7 + 5 = 13
3

2
+ 8 + 4 =

27

2

= 12 ⇒ 𝑥3 0 = 2

Computations continue similarly.

fatihcavdur@uludag.edu.tr

Example DP Formulations

𝑖 𝑥 𝑖 + 𝑥 − 2
𝑖 + 𝑥 − 2

2
+ 𝑐 𝑥 + 𝑓4 𝑖 + 𝑥 − 2 𝑓3 𝑖 𝑥3 𝑖

0 2 0 12.0 12.0 2
0 3 1 12.5
0 4 2 13.0
0 5 3 13.5

1 1 0 11.0
1 2 1 11.5
1 3 2 12.0
1 4 3 12.5
1 5 4 10.0 10.0 5

2 0 0 7.0 7.0 0
2 1 1 10.5
2 2 2 11.0
2 3 3 11.5
2 4 4 9.0

3 0 1 6.5 6.5 0
3 1 2 10.0
3 2 3 10.5
3 3 4 8.0

4 0 2 6.0 6.0 0
4 1 3 9.5
4 2 4 7.0

fatihcavdur@uludag.edu.tr

Example DP Formulations

Stage 2 (Month 2) Computations:

𝑓2 𝑖 = min
𝑥

𝑖 + 𝑥 − 3

2
+ 𝑐 𝑥 + 𝑓3 𝑖 + 𝑥 − 3 ;

𝑖 = 0,1, … ,4
𝑥 ∈ 0, … ,5

0 ≤ 𝑖 + 𝑥 − 3 ≤ 4

𝑓2 0 = min
𝑥∈ 3,4,5

0 + 𝑥 − 3

2
+ 𝑐 𝑥 + 𝑓3 𝑖 + 𝑥 − 3

= min
𝑥∈ 3,4,5

0 + 6 + 12 = 18
1

2
+ 7 + 10 =

35

2
1 + 8 + 7 = 16

 = 16 ⇒ 𝑥2 0 = 5

Computations continue similarly.

fatihcavdur@uludag.edu.tr

Example DP Formulations

𝑖 𝑥 𝑖 + 𝑥 − 3
𝑖 + 𝑥 − 3

2
+ 𝑐 𝑥 + 𝑓3 𝑖 + 𝑥 − 3 𝑓2 𝑖 𝑥2 𝑖

0 3 0 18.0
0 4 1 17.5
0 5 2 16.0 16.0 5

1 2 0 17.0
1 3 1 16.5
1 4 2 15.0 15.0 4
1 5 3 16.0

2 1 0 16.0
2 2 0 15.5
2 3 2 14.0 14.0 3
2 4 3 15.0
2 5 4 16.0

3 0 0 12.0 12.0 0
2 1 0 14.5
3 2 2 13.0
3 3 3 14.0
3 4 4 15.0

4 0 1 10.5 10.5 0
4 1 2 12.0
4 2 3 13.0
4 3 4 14.0

fatihcavdur@uludag.edu.tr

Example DP Formulations

Stage 1 (Month 1) Computations:

𝑓1 𝑖 = min
𝑥

𝑖 + 𝑥 − 1

2
+ 𝑐 𝑥 + 𝑓2 𝑖 + 𝑥 − 1 ;

𝑖 = 0,… ,4;
𝑥 ∈ 0,… ,5

0 ≤ 𝑖 + 𝑥 − 1 ≤ 4

𝑓1 0 = min
𝑥∈ 1,2,3,4,5

0 + 𝑥 − 1

2
+ 𝑐 𝑥 + 𝑓2 𝑖 + 𝑥 − 1

= min
𝑥∈ 1,2,3,4,5

0 + 4 + 16 = 20
1

2
+ 5 + 15 =

41

2
1 + 6 + 14 = 21
3

2
+ 7 + 12 =

41

2

2 + 8 +
21

2
=

41

2

= 20 ⇒ 𝑥1 0 = 1

Computations continue similarly.

fatihcavdur@uludag.edu.tr

Example DP Formulations

𝑖 𝑥 𝑖 + 𝑥 − 1
𝑖 + 𝑥 − 1

2
+ 𝑐 𝑥 + 𝑓2 𝑖 + 𝑥 − 1 𝑓1 𝑖 𝑥1 𝑖

0 1 0 20.0 20.0 1
0 2 1 20.5
0 3 2 21.0
0 4 3 20.5
0 5 4 20.5

1 0 0 16.0 16.0 0
1 1 1 19.5
1 2 2 20.0
1 3 3 19.5
1 4 4 19.5

2 0 1 15.5 15.5 0
2 1 2 19.0
2 2 3 18.5
2 3 4 18.5

3 0 2 15.0 15.0 0
3 1 3 17.5
3 2 4 17.5

4 0 3 13.5 13.5 0
4 1 4 16.5

fatihcavdur@uludag.edu.tr

Example DP Formulations

Determination of the Optimal Production Schedule

Since the initial inventory is 0 units, the minimum cost for the 4-month

period will be

𝑓1 0 = 20 ⇒ 𝑥1 0 = 1

𝑓2 0 = 16 ⇒ 𝑥2 0 = 5

𝑓3 2 = 7 ⇒ 𝑥3 2 = 0

𝑓4 0 = 7 ⇒ 𝑥4 0 = 4

Thus, we should produce 1 unit during month 1, 5 units during month 2,

0 units during month 3 and 4 units during month 4 with a total cost of

20.

fatihcavdur@uludag.edu.tr

Example DP Formulations

fatihcavdur@uludag.edu.tr

Resource Allocation Problems

Assume that we have 𝑤 units of available resource and 𝑇 activities to

which the resource can be allocated. If activity 𝑡 is implemented at level

𝑥𝑡 (non-negative integer), then, 𝑔𝑡 𝑥𝑡 units of resource are used by the

activity, and a benefit 𝑟𝑡 𝑥𝑡 is obtained. The problem of determining

the allocation of resources that maximizes the total benefit subject to

the limited resource availability may be written as

max 𝑧 = 𝑟𝑡 𝑥𝑡

𝑇

𝑡=1

 𝑔𝑡 𝑥𝑡

𝑇

𝑡=1

≤ 𝑤

𝑥𝑡 ∈ {0,1,2, … }

fatihcavdur@uludag.edu.tr

Resource Allocation Problems

To solve the above problem by DP, we let

𝑓𝑡 𝑑 = the maximum benefit that can be obtained from activities

𝑡, 𝑡 + 1,… , 𝑇 if 𝑑 units of the resource are available for activities

𝑡, 𝑡 + 1,… , 𝑇.

Thus, we can write

𝑓𝑇+1 𝑑 = 0; ∀𝑑

𝑓𝑡 𝑑 = max 𝑟𝑡 𝑥𝑡 + 𝑓𝑡+1 𝑑 − 𝑔𝑡 𝑥𝑡 ; 𝑥𝑡 ∈ 0,1,2, … ; 𝑔𝑡 𝑥𝑡 ≤ 𝑑

fatihcavdur@uludag.edu.tr

The Knapsack Problem

Suppose a 10-lb knapsack is to be filled with the items listed in the Table

below. To maximize total benefit, how should the knapsack be filled?

Item Weight Benefit

1 4 11
2 3 7
3 5 12

Table: Problem Data

fatihcavdur@uludag.edu.tr

The Knapsack Problem

We let

𝑓𝑡 𝑑 = the maximum benefit that can be earned from a 𝑑 −pound

knapsack that is filled with items of type 𝑡, 𝑡 + 1,… ,3.

We have,

𝑟1 𝑥1 = 11𝑥1 ; 𝑟2 𝑥2 = 7𝑥2; 𝑟3 𝑥3 = 12𝑥3

𝑔1 𝑥1 = 4𝑥1; 𝑔2 𝑥2 = 3𝑥2 ; 𝑔3 𝑥3 = 5𝑥3

fatihcavdur@uludag.edu.tr

The Knapsack Problem

Stage 3 Computations:

𝑓3 𝑑 = max
𝑥3

 12𝑥3 ; 𝑥𝑡 ∈ 0,1,2, … ; 5𝑥3 ≤ 𝑑

𝑓3 10 = 24 ⇒ 𝑥3 10 = 2

𝑓3 5 = 𝑓3 6 = ⋯ = 𝑓3 9 = 12 ⇒ 𝑥3 5 = 𝑥3 6 = ⋯ = 𝑥3 9 = 1

𝑓3 0 = 𝑓3 1 = ⋯ = 𝑓3 4 = 0 ⇒ 𝑥3 0 = 𝑥3 1 = ⋯ = 𝑥3 4 = 0

fatihcavdur@uludag.edu.tr

The Knapsack Problem

𝑓2 𝑑 = max
𝑥2

 7𝑥2 + 𝑓3 𝑑 − 3𝑥2 ; 𝑥𝑡 ∈ 0,1,2, … ; 3𝑥2 ≤ 𝑑

𝑓2 10 = max

7 × 0 + 𝑓3 10 = 24

7 × 1 + 𝑓3 7 = 19

7 × 2 + 𝑓3 4 = 14

7 × 3 + 𝑓3 1 = 21

= 24 ⇒ 𝑥2 10 = 0

fatihcavdur@uludag.edu.tr

The Knapsack Problem

𝑓2 9 = max

7 × 0 + 𝑓3 9 = 12

7 × 1 + 𝑓3 6 = 19

7 × 2 + 𝑓3 3 = 14

7 × 3 + 𝑓3 3 = 21

= 21 ⇒ 𝑥2 9 = 3

𝑓2 8 = max

7 × 0 + 𝑓3 8 = 12

7 × 1 + 𝑓3 5 = 19

7 × 2 + 𝑓3 2 = 14

 = 19 ⇒ 𝑥2 8 = 1

𝑓2 7 = max

7 × 0 + 𝑓3 7 = 12

7 × 1 + 𝑓3 4 = 7

7 × 2 + 𝑓3 1 = 14

 = 14 ⇒ 𝑥2 7 = 2

fatihcavdur@uludag.edu.tr

The Knapsack Problem

𝑓2 6 = max

7 × 0 + 𝑓3 6 = 12

7 × 1 + 𝑓3 3 = 7

7 × 2 + 𝑓3 0 = 14

 = 14 ⇒ 𝑥2 6 = 2

𝑓2 5 = max
7 × 0 + 𝑓3 5 = 12

7 × 1 + 𝑓3 2 = 7
 = 12 ⇒ 𝑥2 5 = 0

𝑓2 4 = max
7 × 0 + 𝑓3 4 = 0

7 × 1 + 𝑓3 1 = 7
 = 7 ⇒ 𝑥2 4 = 1

𝑓2 3 = max
7 × 0 + 𝑓3 3 = 0

7 × 1 + 𝑓3 0 = 7
 = 7 ⇒ 𝑥2 3 = 1

𝑓2 2 = 7 × 0 + 𝑓3 2 = 0 ⇒ 𝑥2 2 = 0

𝑓2 1 = 7 × 0 + 𝑓3 1 = 0 ⇒ 𝑥2 1 = 0

𝑓2 0 = 7 × 0 + 𝑓3 0 = 0 ⇒ 𝑥2 0 = 0

fatihcavdur@uludag.edu.tr

The Knapsack Problem

Stage 1 Computations:

𝑓1 10 = max

11 × 0 + 𝑓2 10 = 24

11 × 1 + 𝑓2 6 = 25

11 × 2 + 𝑓2 2 = 22

 = 25 ⇒ 𝑥1 10 = 1

Thus, the optimal solution is including 1 type 1 item, 2 type 2 items and

0 type 3 items as seen below:

𝑓1 10 = 10 ⇒ 𝑥1 10 = 1

𝑓2 6 = 14 ⇒ 𝑥2 6 = 2

𝑓3 0 = 0 ⇒ 𝑥3 0 = 0

fatihcavdur@uludag.edu.tr

The Knapsack Problem

fatihcavdur@uludag.edu.tr

The Knapsack Problem

fatihcavdur@uludag.edu.tr

Another solution approach for the knapsack problem can be defined as

follows:

 𝑔 𝑤 = the max benefit obtained from a 𝑤-lb knapsack

 𝑏𝑗 = benefit of item 𝑗

 𝑤𝑗 = weight of item 𝑗

We can write, for 𝑤 = 0, 𝑔 0 = 0, and for 𝑤 > 0,

𝑔 𝑤 = max
𝑗
 𝑏𝑗 + 𝑔 𝑤 −𝑤𝑗

The Knapsack Problem

fatihcavdur@uludag.edu.tr

We can write, for 𝑤 = 0, 𝑔 0 = 0, and for 𝑤 > 0,

𝑔 𝑤 = max
𝑗
 𝑏𝑗 + 𝑔 𝑤 −𝑤𝑗

We can then write

𝑔 0 = 𝑔 1 = 𝑔 2 = 0 ⇒ 𝑥 0 = 𝑥 1 = 𝑥 2 = 0

𝑔 3 = 7 ⇒ 𝑥 3 = 2

𝑔 4 = max
11 + 𝑔 0 = 11

7 + 𝑔 1 = 7
 = 11 ⇒ 𝑥 4 = 1

𝑔 5 = max

11 + 𝑔 1 = 11

7 + 𝑔 2 = 7

12 + 𝑔 0 = 12

 = 12 ⇒ 𝑥 5 = 3

The Knapsack Problem

fatihcavdur@uludag.edu.tr

𝑔 5 = max

11 + 𝑔 1 = 11

7 + 𝑔 2 = 7

12 + 𝑔 0 = 12

 = 12 ⇒ 𝑥 5 = 3

𝑔 6 = max

11 + 𝑔 2 = 11

7 + 𝑔 3 = 14

12 + 𝑔 1 = 12

 = 14 ⇒ 𝑥 5 = 2

If we continue similarly,

𝑔 10 = max

11 + 𝑔 6 = 25

7 + 𝑔 7 = 25

12 + 𝑔 5 = 24

 = 25 ⇒ 𝑥 10 = 1 ∨ 2

Hence, one of the optimal solutions is to fill the knapsack as Type 1-

Type 2-Type 2 since 𝑥 10 = 1, 𝑥 5 = 2, 𝑥 3 = 2.

The Knapsack Problem

fatihcavdur@uludag.edu.tr

In a knapsack problem, if we let 𝑏𝑖 and 𝑤𝑖 as the benefit and weight of

item 𝑖, respectively, we can show that, at least one type 𝑖 item will be

used if 𝑤 ≥ 𝑤∗ where

𝑤∗ =
𝑏𝑖𝑤𝑖

𝑏𝑖 −𝑤𝑖
𝑏𝑗
𝑤𝑗

and

𝑏𝑖
𝑤𝑖

>
𝑏𝑗

𝑤𝑗

The Knapsack Problem

fatihcavdur@uludag.edu.tr

For example, consider the following knapsack problem.

max 𝑧 = 16𝑥1 + 22𝑥2 + 12𝑥3 + 8𝑥4

5𝑥1 + 7𝑥2 + 5𝑥3 + 4𝑥4 ≤ 𝑤

𝑥𝑖 ∈ 𝑍
+ ∀𝑖

We can say that at least one Type 1 item will be in the knapsack if

𝑤 ≥
 16 5

16 − 5
22
7

= 280

This result, referred as a turnpike theorem, can greatly reduce the

necessary computations to solve a knapsack problem.

The Travelling Salesman Problem

It’s the last weekend of the 2004 election campaign, and candidate

Walter Glenn is in New York City. Before Election Day, Walter must visit

Miami, Dallas, and Chicago and then return to his New York City

headquarters. Walter wants to minimize the total distance he must

travel. In what order should he visit the cities? The distances in miles

between the four cities are given in the Table below.

from/to NY Miami Dallas Chicago

NY - 1,334 1,559 809
Miami - 1,343 1,397
Dallas - 921
Chicago -

Table: Problem Data

fatihcavdur@uludag.edu.tr

The Travelling Salesman Problem

𝑐𝑖𝑗 = the distance between cities 𝑖 and 𝑗

𝑓𝑡 𝑖, 𝑆 = the minimum distance that must be traveled to complete a

tour if the 𝑡 − 1 cities in the set 𝑆 have been visited and city 𝑖 was the

last city visited

For 𝑡 = 4,

𝑓4 2, 2,3,4 = 𝑐21 = 1,334

𝑓4 3, 2,3,4 = 𝑐31 = 1,559

𝑓4 4, 2,3,4 = 𝑐41 = 809

For 𝑡 = 1,2,3,

𝑓𝑡 𝑖, 𝑆 = min
𝑗∉𝑆⋀𝑗≠1

 𝑐𝑖𝑗 + 𝑓𝑡+1 𝑗, 𝑆 ∪ 𝑗 ; 𝑡 = 1,2,3

fatihcavdur@uludag.edu.tr

The Travelling Salesman Problem

Stage 3 Computations:

𝑓3 2, 2,3 = 𝑐24 + 𝑓4 4, 2,3,4 = 1,397 + 809 = 2,206

𝑓3 3, 2,3 = 𝑐34 + 𝑓4 4, 2,3,4 = 921 + 809 = 1,730

𝑓3 2, 2,4 = 𝑐23 + 𝑓4 3, 2,3,4 = 1,343 + 1,559 = 2,902

𝑓3 4, 2,4 = 𝑐43 + 𝑓4 3, 2,3,4 = 921 + 1,559 = 2,480

𝑓3 3, 3,4 = 𝑐32 + 𝑓4 2, 2,3,4 = 1,343 + 1,334 = 2,677

𝑓3 4, 3,4 = 𝑐42 + 𝑓4 2, 2,3,4 = 1,397 + 1,334 = 2,731

fatihcavdur@uludag.edu.tr

The Travelling Salesman Problem

Stage 2 Computations:

𝑓2 2, 2 = min
𝑐23 + 𝑓3 3, 2,3 = 1,343 + 1,730 = 3,073

𝑐24 + 𝑓3 4, 2,4 = 1,397 + 2,480 = 3,877

𝑓2 3, 3 = min
𝑐34 + 𝑓3 4, 3,4 = 921 + 2,731 = 3,652

𝑐32 + 𝑓3 2, 2,3 = 1,343 + 2,206 = 3,549

𝑓2 4, 4 = min
𝑐42 + 𝑓3 2, 2,4 = 1,397 + 2,902 = 4,299

𝑐43 + 𝑓3 3, 3,4 = 921 + 2,677 = 3,598

fatihcavdur@uludag.edu.tr

The Travelling Salesman Problem

Stage 1 Computations:

𝑓1 1, ∙ = min

𝑐12 + 𝑓2 2, 2 = 1,334 + 3,073 = 4,407

𝑐13 + 𝑓2 3, 3 = 1,559 + 3,549 = 5,108

𝑐14 + 𝑓2 4, 4 = 809 + 3,598 = 4,407

The (alternative) optimal tour is City 1 (NY) – City 4 (Chicago) – City 3

(Dallas) – City 2 (Miami) with length of 𝑓1 1, ∙ = 4,407.

fatihcavdur@uludag.edu.tr

The End

fatihcavdur@uludag.edu.tr

