
END3033 Operations Research I 
Integer Programming 

to accompany 

Operations Research: Applications and Algorithms 

Fatih Cavdur 



Introduction 

An IP in which all variables are required to be integers is called a pure 

integer programming problem. For example, 

max 𝑧 = 3𝑥1 + 2𝑥2 

𝑥1 + 𝑥2 ≤ 6
𝑥1 , 𝑥2 ≥ 0
𝑥1 , 𝑥2 ∈ ℤ

 



Introduction 

An IP in which only some of the variables are required to be integers is 

called a mixed integer programming problem. For example, 

max 𝑧 = 3𝑥1 + 2𝑥2 

𝑥1 + 𝑥2 ≤ 6
𝑥1 , 𝑥2 ≥ 0

𝑥1 ∈ ℤ
 



Introduction 

An integer programming problem in which all the variables must equal 0 

or 1 is called a 0 - 1 (binary) IP. 

max 𝑧 = 𝑥1 − 𝑥2 

𝑥1 + 2𝑥2 ≤ 2
2𝑥1 − 𝑥2 ≤ 1

𝑥1 , 𝑥2 ∈  0,1 
 



Introduction 

Definition: LP Relaxation 
 
The LP obtained by omitting all integer or 0–1 constraints on variables is 
called the LP relaxation (LPR) of the IP. 
 
 

IP LP Relaxation 

max 𝑧 = 3𝑥1 + 2𝑥2 
𝑥1 + 𝑥2 ≤ 6
𝑥1 , 𝑥2 ≥ 0
𝑥1 , 𝑥2 ∈ ℤ

 

max 𝑧 = 3𝑥1 + 2𝑥2 
𝑥1 + 𝑥2 ≤ 6
𝑥1 , 𝑥2 ≥ 0

 

 



Introduction 

Any IP may be viewed as the LP relaxation (LPR) plus additional 

constraints (the constraints that state which variables must be integers 

or be 0 or 1). Hence, the LP relaxation is a less constrained, or more 

relaxed, version of the IP. This means that the feasible region for any IP 

must be contained in the feasible region for the corresponding LPR. For 

any IP that is a max problem, this implies that 

 

optimal
𝑧

for
LPR

 ≥  

optimal
𝑧

for
IP

  



Introduction 

Example: 

max𝑧 = 21𝑥1 + 11𝑥2 

7𝑥1 + 4𝑥2 ≤ 13
𝑥1 , 𝑥2 ≥ 0
𝑥1 , 𝑥2 ∈ ℤ

 

The feasible set consists of the following points: 

𝑆 =   0,0 ,  0,1 ,  0,2 ,  0,3 ,  1,0 ,  1,1   



Introduction 



Introduction 

If the feasible region for a pure IP’s LPR is bounded, then the feasible 

region for the IP will consist of a finite number of points. In theory, such 

an IP could be solved by enumerating the objective values for each 

feasible point. The problem with this approach is that most actual IPs 

have feasible regions consisting of billions of feasible points. In such 

cases, a complete enumeration of all feasible points would require a 

large amount of computer time. 



Introduction 

We see that the optimal solution for the IP is 𝑥1 = 0 and 𝑥2 = 3, and 

the optimal solution for the LPR is 𝑥1 = 13/7 and 𝑥2 = 0. Rounding this 

solution, we obtain 𝑥1 = 2 and 𝑥2 = 0 which is not feasible, and hence, 

is not the optimal solution for the IP. Even if we round down 𝑥1, we 

obtain 𝑥1 = 1 and 𝑥2 = 0 which is not optimal either. 

In summary, even though the feasible region for an IP is a subset of the 

feasible region for the IP’s LPR, the IP is usually much more difficult to 

solve than the IP’s LPR. 



IP Formulations 

Knapsack Problem 

Example: 

Stockco is considering four investments. Investment 1 will yield a net 

present value (NPV) of $16,000; investment 2, an NPV of $22,000; 

investment 3, an NPV of $12,000; and investment 4, an NPV of $8,000. 

Each investment requires a certain cash outflow at the present time: 

investment 1, $5,000; investment 2, $7,000; investment 3, $4,000; and 

investment 4, $3,000. Currently, $14,000 is available for investment. 

Formulate an IP whose solution will tell Stockco how to maximize the 

NPV obtained from investments 1–4. 



IP Formulations 

Knapsack Problem 

If we let 

𝑥𝑖 =  
1 if we insvest in investment 𝑖
0 otherwise

 

We can then write the following IP: 

max 𝑧 = 16𝑥1 + 22𝑥2 + 12𝑥3 + 8𝑥4 

5𝑥1 + 7𝑥2 + 4𝑥3 + 3𝑥4 ≤ 14

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ∈  0,1 
 



IP Formulations 

Example: 

If we add the following restricitions for Stocko, modify the IP to satisfy 

these: 

(R1) They can invest at most 2 investments. 

(R2) If they invest in investment 2, they must also invest in investment 

1. 

(R3) If they invest in investment 2, they cannot invest in investment 4. 



IP Formulations 

We can then write the following IP: 

max 𝑧 = 16𝑥1 + 22𝑥2 + 12𝑥3 + 8𝑥4 

5𝑥1 + 7𝑥2 + 4𝑥3 + 3𝑥4 ≤ 14
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 2 (𝑅1)

−𝑥1 + 𝑥2 ≤ 0 (𝑅2)

𝑥2 + 𝑥4 ≤ 1 (𝑅3)

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ∈  0,1 

 



IP Formulations 

Fixed-Charge Problems 

Example: 

Gandhi Cloth Company is capable of manufacturing three types of 

clothing: shirts, shorts, and pants. The manufacture of each type of 

clothing requires that Gandhi have the appropriate type of machinery 

available. The machinery needed to manufacture each type of clothing 

must be rented at the following rates: shirt machinery, $200 per week; 

shorts machinery, $150 per week; pants machinery, $100 per week. The 

manufacture of each type of clothing also requires the amounts of cloth 

and labor shown in below table. Each week, 150 hours of labor and 160 

sq. yd. of cloth are available. The variable unit cost and selling price for 

each type of clothing are shown in below table. 



IP Formulations 

Fixed-Charge Problems 

Type Labor 
(hours) 

Cloth 
(sq. yd.) 

Price 
($) 

Variable Cost 
($) 

Shirt 3 4 12  6 
Shorts 2 3 8  4 
Pants 6 4 15  8 

 



IP Formulations 

Fixed-Charge Problems 

𝑥1 = number of shirts produced weekly 
𝑥2 = number of shorts produced weekly 
𝑥3 = number of pants produced weekly 

𝑦1 =  
1, if any shirts are produced
0, otherwise

 

𝑦2 =  
1, if any shorts are produced
0, otherwise

 

𝑦3 =  
1, if any pants are produced
0, otherwise

 



IP Formulations 

Fixed-Charge Problems 

max𝑧 = 6𝑥1 + 4𝑥2 + 7𝑥3 − 200𝑦1 − 150𝑦2 − 100𝑦3 

3𝑥1 + 2𝑥2 + 6𝑥3 ≤ 150

4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 160

𝑥1 , 𝑥2 , 𝑥3 ≥ 0

𝑥1 , 𝑥2 , 𝑥3 ∈ ℤ

, 𝑦1 , 𝑦2 , 𝑦3 ∈  0,1 

 

Is the above formulation correct? 



IP Formulations 

Fixed-Charge Problems 

max𝑧 = 6𝑥1 + 4𝑥2 + 7𝑥3 − 200𝑦1 − 150𝑦2 − 100𝑦3 

3𝑥1 + 2𝑥2 + 6𝑥3 ≤ 150

4𝑥1 + 3𝑥2 + 4𝑥3 ≤ 160

𝑥1 − 𝑀1𝑦1 ≤ 0

− 𝑀2𝑦2 ≤ 0

− 𝑀3𝑦3 ≤ 0

𝑥1 , 𝑥2 , 𝑥3 ≥ 0

𝑥1 , 𝑥2 , 𝑥3 ∈ ℤ

, 𝑦1 , 𝑦2 , 𝑦3 ∈  0,1 

 

What about this one? 



IP Formulations 

Set Covering Problems 

Example: 

There are six cities (cities 1–6) in Kilroy County. The county must 

determine where to build fire stations. The county wants to build the 

minimum number of fire stations needed to ensure that at least one fire 

station is within 15 minutes (driving time) of each city. The times (in 

minutes) required to drive between the cities in Kilroy County are 

shown below. Formulate an IP that will tell Kilroy how many fire stations 

should be built and where they should be located. 



IP Formulations 

Set Covering Problems 

From/To C1 C2 C3 C4 C5 C6 Cities 
within 15 minutes 

City 1 - 10 20 30 30 20  1,2 
City 2 - - 25 35 20 10  1,2,6 
City 3 - - - 15 30 20  3,4 
City 4 - - - - 15 25  3,4,5 
City 5 - - - - - 14  4,5,6 
City 6 - - - - - -  4,5,6 

 



IP Formulations 

Set Covering Problems 

𝑥𝑖 =  
1, if a fire station is built in city 𝑖
0, otherwise

 

min 𝑧 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 

𝑥1 + 𝑥2 ≥ 1

𝑥1 + 𝑥2 + 𝑥6 ≥ 1

𝑥3 + 𝑥4 ≥ 1

𝑥3 + 𝑥4 + 𝑥5 ≥ 1

𝑥4 + 𝑥5 + 𝑥6 ≥ 1

𝑥2 + 𝑥5 + 𝑥6 ≥ 1

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 ∈  0,1 

 



IP Formulations 

Either-Or Constraints 

If we have the following constraints 

𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛 ≤ 0 ∨ 𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛 ≤ 0 

By letting 𝑦 ∈  0,1 , we can write 

𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛 ≤ 𝑀𝑦 

𝑔 𝑥1 , 𝑥2 , … , 𝑥𝑛 ≤ 𝑀 1 − 𝑦  



IP Formulations 

Either-Or Constraints-Example 

Dorian Auto is considering manufacturing three types of autos: ompact, 

midsize, and large. The resources required for, and the profits yielded 

by, each type of car are shown in the Table below. Currently, 6,000 tons 

of steel and 60,000 hours of labor are available. For production of a type 

of car to be economically feasible, at least 1,000 cars of that type must 

be produced. Formulate an IP to maximize Dorian’s profit. 

Resource Compact Midsize Large 

Steel 1.5 tons 3 tons 5 tons 
Labor 30 hours 25 hours 40 hours 
Profit ($) 2,000 3,000 4,000 

Table: Resources and Profits 



IP Formulations 

Either-Or Constraints-Example 

We let 

𝑥1 = # of compact cars produced 

𝑥2 = # of midsize cars produced 

𝑥3 = # of large cars produced 



IP Formulations 

Either-Or Constraints-Example 

𝑥1 ≤ 𝑀1𝑦1 

1,000 − 𝑥1 ≤ 𝑀1 1 − 𝑦1  

𝑥2 ≤ 𝑀2𝑦2 

1,000 − 𝑥2 ≤ 𝑀2 1 − 𝑦2  

𝑥3 ≤ 𝑀3𝑦3 

1,000 − 𝑥3 ≤ 𝑀3 1 − 𝑦3  

1.5𝑥1 + 3𝑥2 + 5𝑥3 ≤ 6,000 

30𝑥1 + 25𝑥2 + 40𝑥3 ≤ 60,000 



IP Formulations 

Either-Or Constraints-Example 

𝑥𝑖 ∈ ℤ, ∀𝑖 

𝑦𝑖 ∈  0,1 , ∀𝑖 

𝑥𝑖 ≥ 0, ∀𝑖 

Note that we can substitute 𝑀1 = 𝑀2 = 2,000 and 𝑀2 = 1,200. Why? 



IP Formulations 

If-Then Constraints 

If we have the following two constraints 𝑓 and 𝑔 as 

𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛 > 0 ⇒ 𝑔 𝑥1 , 𝑥2 , … , 𝑥𝑛 ≥ 0 

By letting 𝑦 ∈  0,1 , we can write 

𝑓 𝑥1 , 𝑥2 , … , 𝑥𝑛 ≤ 𝑀 1 − 𝑦  

𝑔 𝑥1 , 𝑥2 , … , 𝑥𝑛 ≥ 𝑀𝑦 



IP Formulations 

Piecewise Linear Functions 

When we have a piecewise linear function 𝑓 𝑥 , we can use the 

following approach to linearize it: 



IP Formulations 

Piecewise Linear Functions 

Step 1) Replace 𝑓 𝑥  by 𝑧1𝑓 𝑏1 + 𝑧2𝑓 𝑏2 + ⋯ + 𝑧𝑛𝑓 𝑏𝑛  

Step 2) Add the following constraints to the problem: 



IP Formulations 

Piecewise Linear Functions 

𝑧1 ≤ 𝑦1 

𝑧2 ≤ 𝑦1 + 𝑦2 

⋯ ≤ ⋯ 

𝑧𝑛−1 ≤ 𝑦𝑛−2 + 𝑦𝑛−1 

𝑧𝑛 ≤ 𝑦𝑛−1 

𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛−1 = 1 

𝑧1 + 𝑧2 + ⋯ + 𝑧𝑛 = 1 

𝑥 = 𝑧1𝑏1 + 𝑧2𝑏2 + ⋯ + 𝑧𝑛𝑏𝑛  

𝑦𝑖 ∈  0,1 , ∀𝑖 

𝑧𝑖 ≥ 0, ∀𝑖 



The Branch-and-Bound Method 

In practice, most IPs are solved by using the technique of branch-and-

bound by efficiently enumerating the points in a sub-problem’s feasible 

region. Before explaining how branch-and-bound works, we need to 

make the following elementary but important observation: 

If you solve the LPR of a pure IP and obtain a solution in which all 

variables are integers, then the optimal solution to the LPR is also the 

optimal solution to the IP. 



The Branch-and-Bound Method 

Example: 

max 𝑧 = 8𝑥1 + 5𝑥2 

𝑥1 + 𝑥2 ≤ 6
9𝑥1 + 5𝑥2 ≤ 45
𝑥1 , 𝑥2 ≥ 0
𝑥1 , 𝑥2 ∈ ℤ

 

The optimal solution to the LPR 𝑧 = 165/4; 𝑥1 = 15/4, 𝑥2 = 9/4. We 

know that the objective value of the LPR 𝑧 = 165/4 sets an upper 

bound for the objective value of the IP. 



The Branch-and-Bound Method 



The Branch-and-Bound Method 

Let the original problem be the Sub-Problem 1 and construct the 

following sub-problems by branching on variable 𝑥1: 

Sub-Problem 2 = Sub-Problem 1 + 𝑥1 ≥ 4 

Sub-Problem 3 = Sub-Problem 1 + 𝑥1 ≤ 3 



The Branch-and-Bound Method 



The Branch-and-Bound Method 

The optimal solution to sub-problem 2 did not yield an all-integer 

solution, so we choose to use sub-problem 2 to create two new sub-

problems. We choose a fractional valued variable in the optimal 

solution to sub-problem 2 and then branch on that variable. Since 𝑥2 is 

the only fractional variable here, we branch on 𝑥2 as follows: 

SP4 = SP1 + 𝑥1 ≥ 4 + 𝑥2 ≥ 2 = SP2 + 𝑥2 ≥ 2 

SP5 = SP1 + 𝑥1 ≤ 3 + 𝑥2 ≤ 1 = SP2 + 𝑥2 ≤ 1 



The Branch-and-Bound Method 



The Branch-and-Bound Method 

The feasible regions for sub-problems 4 and 5 are displayed below. The 

set of unsolved sub-problems consists of sub-problems 3, 4, and 5. We 

now choose a sub-problem to solve. For reasons that are discussed 

later, we choose to solve the most recently created sub-problem. (This 

is called the LIFO, or last-in-first-out, rule.) The LIFO rule implies that we 

should next solve sub-problem 4 or sub-problem 5. We arbitrarily 

choose to solve sub-problem 4. 



The Branch-and-Bound Method 

We note that sub-problem 4 is infeasible. Thus, sub-problem 4 cannot 

yield the optimal solution to the IP. To indicate this fact, we place an X 

by sub-problem 4. Because any branches emanating from sub-problem 

4 will yield no useful information, it is fruitless to create them. When 

further branching on a sub-problem cannot yield any useful 

information, we say that the sub-problem (or node) is fathomed.  

SP6 = SP5 + 𝑥1 ≥ 5 

SP7 = SP5 + 𝑥1 ≤ 4 



The Branch-and-Bound Method 



The Branch-and-Bound Method 



The Branch-and-Bound Method 



The Branch-and-Bound Method 

Recall that in solving the Telfa problem by the branch-and-bound 

procedure, many seemingly arbitrary choices were made. Two general 

approaches are commonly used to determine which sub-problems 

should be solved next. The most widely used is the LIFO rule, which 

chooses to solve the most recently created sub-problem (back-tracking 

or depth-first). The second commonly used method is jump-tracking 

(breadth-first). When branching on a node, the jump-tracking approach 

solves all the problems created by the branching. 



The Branch-and-Bound Method 

Knapsack Problem 

Let 𝑐𝑖  be the benefit obtained if item 𝑖 is chosen, 𝑏 is the amount of 

available resource and 𝑎𝑖  is the amount of available resource used by 

item 𝑖. We can then write 

max𝑧 = 𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛  

𝑎1𝑥1 + … + 𝑎𝑛𝑥𝑛 ≤ 𝑏

𝑥1 , … , 𝑥𝑛 ∈  0,1 
 

Observe that 𝑐𝑖/𝑎𝑖  might be interpreted as the benefit by a unit of 

resource 𝑖. We can then say that the best and worst items to have are 

the ones with the largest and smallest 𝑐𝑖/𝑎𝑖 , respectively. 



The Branch-and-Bound Method 

Knapsack Problem 

Example: 

max 𝑧 = 16𝑥1 + 22𝑥2 + 12𝑥3 + 8𝑥4 

5𝑥1 + 7𝑥2 + 4𝑥3 + 3𝑥4 ≤ 14

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ∈  0,1 
 



The Branch-and-Bound Method 

Knapsack Problem 



The Branch-and-Bound Method 

Knapsack Problem 

Four jobs must be processed on a single machine. The time required to 

process each job and the date the job is due are shown below. The 

delay of a job is the number of days after the due date that a job is 

completed (if a job is completed on time or early, the job’s delay is 

zero). In what order should the jobs be processed to minimize the total 

delay of the four jobs? 



The Branch-and-Bound Method 

Knapsack Problem 

Job Days to Complete 
Due Date 

(end of day) 

1 6 8  
2 4 4  
3 5 12  
4 8 16  

 



The Branch-and-Bound Method 

Knapsack Problem 

The branch-and-bound tree for the example is shown below if we let 

𝑥𝑖𝑗 =  
1, if job 𝑖 is the 𝑗th job to be processed
0, otherwise

 



The Branch-and-Bound Method 

TSP 

Joe State lives in Gary, Indiana. He owns insurance agencies in Gary, 

Fort Wayne, Evansville, Terre Haute, and South Bend. Each December, 

he visits each of his insurance agencies. The distance between each 

agency (in miles) is shown below. What order of visiting his agencies will 

minimize the total distance traveled? 



The Branch-and-Bound Method 

TSP 

 City 1 City 2 City 3 City 4 City 5 

City 1 0 132 217 164 58 
City 2  0 290 201 79 
City 3   0 113 303 
City 4    0 196 
City 5     0 

 



The Branch-and-Bound Method 

TSP 

We let 

𝑥𝑖𝑗 =  
1, if Joe travels from city 𝑖 to city 𝑗
0, otherwise

 

 City 1 City 2 City 3 City 4 City 5 

City 1 M 132 217 164 58 
City 2 132 M 290 201 79 
City 3 217 290 M 113 303 
City 4 164 201 113 M 196 
City 5 58 79 303 196 M 

Cost Matrix for Sub-Problem 1 



The Branch-and-Bound Method 

TSP 

We can find the solution of sub-problem 2 using Hungarian method as 

follows: 

 city 1 city 2 city 3 city 4 city 5 min 

city 1 M 132 217 164 58 58 
city 2 132 M 290 201 79 79 
city 3 217 290 M M 303 217 
city 4 164 201 113 M 196 113 
city 5 58 79 303 196 M 58 

 



The Branch-and-Bound Method 

TSP 

 city 1 city 2 city 3 city 4 city 5 

city 1 M 74 159 106 0 
city 2 53 M 211 122 0 
city 3 0 73 M M 86 
city 4 51 88 0 M 83 
city 5 0 21 245 138 M 

min 0 21 0 106 0 
 



The Branch-and-Bound Method 

TSP 

 city 1 city 2 city 3 city 4 city 5 

city 1 M 53 159 0 0 
city 2 53 M 211 16 0 
city 3 0 52 M M 86 
city 4 51 67 0 M 83 
city 5 0 0 245 32 M 

 



The Branch-and-Bound Method 

TSP 

The optimal solution of the problem can be obtained using the 

Hungarian algorithm as 𝑥15 = 𝑥21 = 𝑥34 = 𝑥43 = 𝑥52 = 1. This solution 

includes two sub-tours as follows (1-5-2-1)-(3-4-3). 

We then define the following sub-problems: 

Sub-Problem 2 = Sub-Problem 1 + (𝑥34 = 0) or (𝑐34 = 𝑀) 
Sub-Problem 3 = Sub-Problem 1 + (𝑥43 = 0) or (𝑐43 = 𝑀) 



The Branch-and-Bound Method 

TSP 

𝑢𝑖 − 𝑢𝑗 + 𝑁𝑥𝑖𝑗 ≤ 𝑁 − 1 expression in the IP formulation eliminates 

sub-tours. Consider, for instance, the above solution. Consider the sub-

tour 2-5-2. If we write down the above expression for this sub-tour, we 

obtain 

𝑢2 − 𝑢5 + 5𝑥25 ≤ 4 and 𝑢5 − 𝑢3 + 5𝑥52 ≤ 4 

Using these, 

𝑢2 − 𝑢5 + 5𝑥25 ≤ 4
𝑢5 − 𝑢2 + 5𝑥52 ≤ 4

 ⇒ 5 𝑥25 + 𝑥52 ≤ 8 ⟺ 𝑥25 = 0 ∨ 𝑥52 = 0 



The Branch-and-Bound Method 

TSP 



The Branch-and-Bound Method 

TSP 

 City 1 City 2 City 3 City 4 City 5 

City 1 M 132 217 164 58 
City 2 132 M 290 201 79 
City 3 217 290 M M 303 
City 4 164 201 113 M 196 
City 5 58 79 303 196 M 

 City 1 City 2 City 3 City 4 City 5 

City 1 M 132 217 164 58 
City 2 132 M 290 201 M 
City 3 217 290 M M 303 
City 4 164 201 113 M 196 
City 5 58 79 303 196 M 

Cost Matrices for Sub-Problem 2 and 3 



The Branch-and-Bound Method 

TSP 

 City 1 City 2 City 3 City 4 City 5 

City 1 M 132 217 164 58 
City 2 132 M 290 201 M 
City 3 217 290 M M 303 
City 4 164 201 113 M 196 
City 5 58 79 303 196 M 

 City 1 City 2 City 3 City 4 City 5 

City 1 M 132 217 164 58 
City 2 132 M 290 201 79 
City 3 217 290 M M 303 
City 4 164 201 M M 196 
City 5 58 M 303 196 M 

Cost Matrices for Sub-Problem 4 and 5 



The Branch-and-Bound Method 

TSP 

We can define the following IP for the TSP: 

min𝑧 =   𝑐𝑖𝑗 𝑥𝑖𝑗

𝑗𝑖

 

 𝑥𝑖𝑗

𝑁

𝑖=1

= 1, 𝑗 = 1,2, … , 𝑁 

 𝑥𝑖𝑗

𝑁

𝑗=1

= 1, 𝑖 = 1,2,… , 𝑁 

𝑢𝑖 − 𝑢𝑗 + 𝑁𝑥𝑖𝑗 ≤ 𝑁 − 1, ∀𝑖, 𝑗 𝑖 ≠ 𝑗 
𝑥𝑖𝑗 ∈ ℤ, ∀𝑖, 𝑗 
𝑢𝑗 ≥ 0, ∀𝑗 



The Branch-and-Bound Method 

TSP 

2 Heuristics for the TSP 

 The Nearest-Neighbor (NN) 

 The Cheapest-Instertion (CI) 



The Branch-and-Bound Method 

TSP-The NN 

 City 1 City 2 City 3 City 4 City 5 

City 1 0 132 217 164 58 
City 2  0 290 201 79 
City 3   0 113 303 
City 4    0 196 
City 5     0 

 



The Branch-and-Bound Method 

TSP-The NN 

 Begin at city 1. 

 Go to city 5 which is the nearest city to city 1. 

o 1-5 

 Go to city 2 which is the nearest to city 5, the most recently 

visited. 

o 1-5-2 

 Go to city 4 which is the nearest to city 2, the most recently 

visited. 

o 1-5-2-4 



The Branch-and-Bound Method 

TSP-The NN 

 Go to city 3 which is the nearest to city 4, the most recently 

visited. 

o 1-5-2-4-3 

 Go to city 1 which is the nearest to city 3, the most recently 

visited. 

o 1-5-2-4-3-1 

 A tour is completed. Stop. 



The Branch-and-Bound Method 

TSP-The CI 

Arc Replaced Arcs Added to Sub-Tour Added Cost 

(1,5) (1,2)-(2,5) 𝑐12 + 𝑐25 − 𝑐15 = 153 

(1,5) (1,3)-(3,5) 𝑐13 + 𝑐35 − 𝑐15 = 462 
(1,5) (1,4)-(4,5) 𝑐14 + 𝑐45 − 𝑐15 = 302 

(5,1) (5,2)-(2,1) 𝑐52 + 𝑐21 − 𝑐51 = 153 

(5,1) (5,3)-(3,1) 𝑐53 + 𝑐31 − 𝑐51 = 462 

(5,1) (5,4)-(4,1) 𝑐54 + 𝑐41 − 𝑐51 = 302 

 

Sub-Tour: 1-2-5-1 



The Branch-and-Bound Method 

TSP-The CI 

Arc Replaced Arcs Added to Sub-Tour Added Cost 

(1,2) (1,3)-(3,2) 𝑐13 + 𝑐32 − 𝑐12 = 375 

(1,2) (1,4)-(4,2) 𝑐14 + 𝑐42 − 𝑐12 = 233 
(2,5) (2,3)-(3,5) 𝑐23 + 𝑐35 − 𝑐25 = 514 

(2,5) (2,4)-(4,5) 𝑐24 + 𝑐45 − 𝑐25 = 318 

(5,1) (5,3)-(3,1) 𝑐53 + 𝑐31 − 𝑐51 = 462 

(5,1) (5,4)-(4,1) 𝑐54 + 𝑐41 − 𝑐51 = 302 

 

Sub-Tour: 1-4-2-5-1 



The Branch-and-Bound Method 

TSP-The CI 

Arc Replaced Arcs Added to Sub-Tour Added Cost 

(1,4) (1,3)-(3,4) 𝑐13 + 𝑐34 − 𝑐14 = 166 

(4,2) (4,3)-(3,2) 𝑐43 + 𝑐32 − 𝑐42 = 202 

(2,5) (2,3)-(3,5) 𝑐23 + 𝑐35 − 𝑐25 = 514 

(5,1) (5,3)-(3,1) 𝑐53 + 𝑐31 − 𝑐51 = 462 

 

Sub-Tour: 1-3-4-2-5-1 



Implicit Enumeration 

Example: 

max 𝑧 = −7𝑥1 − 3𝑥2 − 2𝑥3 − 𝑥4 − 2𝑥5 

−4𝑥1 − 2𝑥2 + 𝑥3 − 2𝑥4 − 𝑥5 ≤ −3
−4𝑥1 − 2𝑥1 − 4𝑥3 + 𝑥4 + 2𝑥5 ≤ −7

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ∈  0,1 
 



Implicit Enumeration 



Implicit Enumeration 

NODE 1: 
At the beginning all variables are free. 
Is best completion feasible? 
NO! 
Is there a feasible completion? 
YES! 

 



Implicit Enumeration 

NODE 2: 
𝑥1: fixed, others free 
Is best completion feasible? 
NO! 
Is there a feasible completion? 
YES! 

 



Implicit Enumeration 

NODE 5: 
𝑥1 , 𝑥2: fixed, others free 
Is best completion feasible? 
NO! 
Is there a feasible completion? 
YES! 

 



Implicit Enumeration 

NODE 6: 
𝑥1 , 𝑥2 , 𝑥3: fixed, others free 
Is best completion feasible? 
YES! 
Hence, we have a candidate! 

 



Implicit Enumeration 

NODE 7: 
𝑥1 , 𝑥2 , 𝑥3: fixed, others free 
Is best completion feasible? 
NO! 
Is there a feasible completion? 
NO! 
Hence, we fathom the node! 

 



The Cutting Plane Algorithm 

Like the branch-and-bound approach, the cutting plane algorithm can 

be used to solve IPs. The summary of the algorithm is as follows: 



The Cutting Plane Algorithm 

Step 1) Find the optimal tableau for the LPR. If all variables in the 

optimal solution assume integer values, then we have found an optimal 

solution to the IP. Otherwise, proceed to Step (2). 

Step 2) Pick a constraint in the LPR optimal tableau whose right-hand 

side has the fractional part closest to 1/2. This constraint will be used to 

generate a cut. 



The Cutting Plane Algorithm 

Step 2-a) For the constraint identified in Step (2), write its right-hand 

side and each variables’s coefficient in the form  𝑥 + 𝑓 where 

0 ≤ 𝑓 < 1. 

Step 2-b) Rewrite the constraint used to generate the cut as 

all terms with integer coefficients = all terms with fractional coefficients 

 

The cut is then 

all terms with fractional coefficients ≤ 0 

 



The Cutting Plane Algorithm 

Step 3) Use the dual simplex to find the optimal solution to the LP 

relaxation, with the cut as an additional constraint. If all variables 

assume integer values in the optimal solution, we have found an 

optimal solution to the IP. Otherwise, pick the constraint with the most 

fractional right-hand side and use it to generate another cut, which is 

added to the tableau. We continue this process until we obtain a 

solution in which all variables are integers. This will be an optimal 

solution to the IP. 



The Cutting Plane Algorithm 

Example: Consider the below model and optimal solution for the LPR: 

max 𝑧 = 8𝑥1 + 5𝑥2 

𝑥1 + 𝑥2 ≤ 6
9𝑥1 + 5𝑥2 ≤ 45
𝑥1 , 𝑥2 ≥ 0
𝑥1 , 𝑥2 ∈ ℤ

 

 𝑧 𝑥1 𝑥2 𝑠1 𝑠2 RHS 

𝑧 1 0 0 1.25 0.75 41.25 

𝑥2 0 0 1 2.25 – 0.25 2.25 
𝑥1 0 1 0 – 1.25 0.25 3.75 

 



The Cutting Plane Algorithm 

 𝑧 𝑥1 𝑥2 𝑠1 𝑠2 RHS 

𝑧 1 0 0 1.25 0.75 41.25 

𝑥2 0 0 1 2.25 – 0.25 2.25 
𝑥1 0 1 0 – 1.25 0.25 3.75 

 

To apply the cutting plane method, we begin by choosing any constraint 

in the LPR’s optimal tableau in which a basic variable is fractional. We 

arbitrarily choose the second constraint, which is 

𝑥1 − 1.25𝑠1 + 0.25𝑠2 = 3.75 



The Cutting Plane Algorithm 

Now write each variable’s coefficient and the constraint’s right hand 

side in the form  𝑥 + 𝑓 where 0 ≤ 𝑓 < 1 as 

𝑥1 − 2𝑠1 + 0.75𝑠1 + 0𝑠2 + 0.25𝑠2 = 3 + 0.75 

Putting all terms with integer coefficients on the left side and all terms 

with fractional coefficients on the right side yields 

𝑥1 − 2𝑠1 + 0𝑠2 − 3 = 0.75 − 0.75𝑠1 − 0.25𝑠2 

Now, we add the following constraint to the LPR which is called a cut: 

0.75 − 0.75𝑠1 − 0.25𝑠2 ≤ 0 



The Cutting Plane Algorithm 

We can show that 

 Any feasible point for the IP will satisfy the cut. 

 The current optimal solution to the LP relaxation will not satisfy 
the cut. 



The Cutting Plane Algorithm 

Thus, a cut “cuts off” the current optimal solution to the LP relaxation, 

but not any feasible solutions to the IP. When the cut to the LP 

relaxation is added, we hope we will obtain a solution where all 

variables are integer-valued. If so, we have found the optimal solution 

to the original IP. If our new optimal solution (to the LPR plus the cut) 

has some fractional-valued variables, then we generate another cut and 

continue the process. Gomory (1958) showed that this process will yield 

an optimal solution to the IP after a finite number of cuts. 



The Cutting Plane Algorithm 

After adding the cut, we proceed by the dual simplex as follows: 

 𝑧 𝑥1 𝑥2 𝑠1 𝑠2 𝑠3 RHS 

𝑧 1 0 0 1.25 0.75 0.75 41.25 

𝑥2 0 0 1 2.25 – 0.25 – 0.25 2.25 
𝑥1 0 1 0 – 1.25 0.25 0.25 3.75 
𝑠3 0 0 0 – 0.75 – 0.25 1.00 – 0.75 

 𝑧 𝑥1 𝑥2 𝑠1 𝑠2 𝑠3 RHS 

𝑧 1 0 0 0 0.33 1.67 40 

𝑥2 0 0 1 0 – 1.00 3.00 0 
𝑥1 0 1 0 0 0.67 – 1.67 5 
𝑠1 0 0 0 1 0.33 – 1.33 1 

 



The Cutting Plane Algorithm 



The Branch-and-Cut Approach 

The Branch-and-Cut Approach 

 Problem Pre-Processing 

 Cutting Plane Generation 

 Branch-and-Bound 



The Branch-and-Cut Approach 

Problem Pre-Processing 

 Fixing Variables 

 Eliminating Redundant Constraints 

 Tightening Constraints 



Thanks…  


