The Revised Simplex Algorithm

Fatih Cavdur

to accompany Operations Research: Applications and Algorithms by W. Winston

Introduction

- If we know the basic variables, B^{-1} , and the original tableau, we can generate any BFS corresponding to any set of basic variables.
- If we code the simplex algorithm, this is all we need to consider.
- This is the basic idea of the revised simplex algorithm.

Example

Example (Dakota Example):

$$\max z = 60x_1 + 30x_2 + 20x_3$$

s.t.

$$8x_1 + 6x_2 + x_3 \le 48$$
 $4x_1 + 2x_2 + 1.5x_3 \le 20$
 $2x_1 + 1.5x_2 + 0.5x_3 \le 8$
 $x_2 \le 5$
 $x_1 , x_2 , x_3 \ge 0$

Example

The IBFS for Dakota:

$$z - 60x_1 - 30.0x_2 - 20.0x_3 = 0$$

 $8x_1 + 6.0x_2 + x_3 + s_1 = 24$
 $4x_1 + 2.0x_2 + 1.5x_3 + s_2 = 8$
 $2x_1 + 1.5x_2 + 0.5x_3 + s_3 = 2$

The optimal simplex tableau for Dakota:

$$z$$
 + 5.00 x_2 + 10.0 s_2 + 10.0 s_3 = 280
- 2.00 x_2 + s_1 + 2.0 s_2 - 8.0 s_3 = 24
- 2.00 x_2 + s_3 + + 2.0 s_2 - 4.0 s_3 = 8
 s_1 + 1.25 s_2 + + - 0.5 s_2 + 1.5 s_3 = 2

Example: IBFS

For the IBFS, we have

$$\mathbf{x}_B = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} \text{ and } \mathbf{x}_N = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\mathbf{c}_B = [0 \quad 0 \quad 0] \text{ and } \mathbf{c}_N = [60 \quad 30 \quad 20]$$

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Example: IBFS

We should compute \bar{c}_i , $\forall j$, to determine the entering variable.

$$\bar{c}_j = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_j - c_j$$

$$\bar{c}_1 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_1 - c_1$$

$$= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 8 \\ 4 \\ 2 \end{bmatrix} - 60$$

$$= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 8 \\ 4 \\ 2 \end{bmatrix} - 60$$

$$= -60$$

Example: IBFS

Similarly,

$$\bar{c}_2 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_2 - c_2$$

$$= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} - 30$$

$$= -30$$

$$\bar{c}_3 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_3 - c_3$$

$$= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1.5 \\ 0.5 \end{bmatrix} - 20$$

$$= -20$$

Example: Entering Variable

 x_1 enters the basis. To find the leaving variable, we should compute the column of x_1 and the RHS vector.

$$\bar{\mathbf{a}}_1 = \mathbf{B}^{-1} \mathbf{a}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 8 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \\ 2 \end{bmatrix}$$

$$\bar{\mathbf{b}} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 48 \\ 20 \\ 8 \end{bmatrix} = \begin{bmatrix} 48 \\ 20 \\ 8 \end{bmatrix}$$

Example: Leaving Variable

By performing the ratio test,

$$\min \begin{cases} 48/8 \\ 20/4 \\ 8/2 \end{cases} = 4$$

 s_3 leaves the basis and we now have

$$\mathbf{x}_B = \begin{bmatrix} s_1 \\ s_2 \\ x_1 \end{bmatrix} \text{ and } \mathbf{x}_N = \begin{bmatrix} s_3 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\mathbf{c}_B = [0 \quad 0 \quad 60] \text{ and } \mathbf{c}_N = [0 \quad 30 \quad 20]$$

Example: Next Iteration

The new ${\bf B}^{-1}$ can be obtained using the following row operations.

$$R_1 \rightarrow R_1 - 4R_3$$

$$R_2 \rightarrow R_2 - 2R_3$$

$$R_3 \rightarrow \frac{1}{2}R_3$$

As a result, we obtain the following ${\bf B}^{-1}$ as follows.

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 0.5 \end{bmatrix}$$

Example: Pricing Out

Now continue with the next iteration:

$$\bar{c}_2 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_2 - c_2
= \begin{bmatrix} 0 & 0 & 60 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 0.5 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} - 30
= \begin{bmatrix} 0 & 0 & 30 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} - 30
= 15$$

Example: Pricing Out

Similarly,

$$\bar{c}_3 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_3 - c_3
= \begin{bmatrix} 0 & 0 & 30 \end{bmatrix} \begin{bmatrix} 1 \\ 1.5 \\ 0.5 \end{bmatrix} - 20
= -5
\bar{c}_{s_3} = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_{s_3} - c_{s_3}
= \begin{bmatrix} 0 & 0 & 30 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 0
= 30$$

Example: Entering Variable

 x_3 enters the basis. To find the leaving variable, we should compute the column of x_3 and the RHS vector.

$$\bar{\mathbf{a}}_3 = \mathbf{B}^{-1} \mathbf{a}_3 = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} -1 \\ 0.5 \\ 0.25 \end{bmatrix}$$

$$\bar{\mathbf{b}} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 0.5 \end{bmatrix} \begin{bmatrix} 48 \\ 20 \\ 8 \end{bmatrix} = \begin{bmatrix} 16 \\ 4 \\ 4 \end{bmatrix}$$

Example: Leaving Variable

By performing the ratio test,

$$\min \begin{Bmatrix} \times \\ 4/0.5 \\ 4/0.25 \end{Bmatrix} = 4$$

 s_2 leaves the basis and we now have

$$\mathbf{x}_B = \begin{bmatrix} s_1 \\ x_3 \\ x_1 \end{bmatrix} \text{ and } \mathbf{x}_N = \begin{bmatrix} s_3 \\ x_2 \\ s_2 \end{bmatrix}$$

$$\mathbf{c}_B = [0 \quad 20 \quad 60] \text{ and } \mathbf{c}_N = [0 \quad 30 \quad 0]$$

Example: Next Iteration

The new ${\bf B}^{-1}$ can be obtained using the following row operations.

$$R_1 \rightarrow R_1 + 2R_2$$

$$R_2 \rightarrow 2R_2$$

$$R_3 \rightarrow R_3 - \frac{1}{2}R_2$$

As a result, we obtain the following ${\bf B}^{-1}$ as follows.

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix}$$

Example: Pricing Out

Now continue with the next iteration:

$$\bar{c}_2 = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_2 - c_2
= \begin{bmatrix} 0 & 20 & 60 \end{bmatrix} \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} - 30
= \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1.5 \end{bmatrix} - 30
= 5$$

Example: Pricing Out

Similarly,

$$\bar{c}_{s_2} = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_{s_2} - c_{s_2}
= \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 0
= 10
\bar{c}_{s_3} = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{a}_{s_3} - c_{s_3}
= \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - 0
= 10$$

Example: Optimal Solution

Optimal!

$$\bar{\mathbf{b}} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -0.5 & 1.5 \end{bmatrix} \begin{bmatrix} 48 \\ 20 \\ 8 \end{bmatrix} = \begin{bmatrix} 24 \\ 8 \\ 2 \end{bmatrix} = \begin{bmatrix} s_1 \\ x_3 \\ x_1 \end{bmatrix} = \mathbf{x}_B$$

$$z = \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b} = \begin{bmatrix} 0 & 10 & 10 \end{bmatrix} \begin{bmatrix} 48 \\ 20 \\ 8 \end{bmatrix} = \mathbf{c}_B \mathbf{\bar{b}} = 280$$

Example: Optimal Solution

Once again, the optimal simplex tableau for Dakota:

$$z$$
 + 5.00 x_2 + 10.0 s_2 + 10.0 s_3 = 280
- 2.00 x_2 + s_1 + 2.0 s_2 - 8.0 s_3 = 24
- 2.00 x_2 + s_3 + + 2.0 s_2 - 4.0 s_3 = 8
 s_1 + 1.25 s_2 + + - 0.5 s_2 + 1.5 s_3 = 2

In an iteration, assume that we have found that x_k should enter the basis in row r. We let the column vector for x_k in the current tableau be

$$ar{\mathbf{a}}_k = egin{bmatrix} ar{a}_{1k} \ ar{a}_{2k} \ ... \ ar{a}_{mk} \end{bmatrix}$$

We then define the $m \times m$ matrix **E** as

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & \dots & -\frac{\overline{a}_{1k}}{\overline{a}_{rk}} & \dots & 0 & 0 \\ 0 & 1 & \dots & -\frac{\overline{a}_{2k}}{\overline{a}_{rk}} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & -\frac{1}{\overline{a}_{rk}} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & -\frac{\overline{a}_{m-1,k}}{\overline{a}_{rk}} & \dots & 1 & 0 \\ 0 & 0 & \dots & -\frac{\overline{a}_{mk}}{\overline{a}_{rk}} & \dots & 0 & 1 \end{bmatrix}$$

Note that \mathbf{E} is simply the \mathbf{I}_m with column r replaced accordingly which is called as an elementary matrix.

We can compute the new row r using the current row r in ${\bf B}^{-1}$ as

$$r_n \to \frac{1}{\overline{a}_{rk}} \times r_c$$

and for $i \neq r$,

$$r_n \to \frac{\overline{a}_{ik}}{\overline{a}_{rk}} \times r_c$$

We can then write

$$r_n \to \frac{1}{\overline{a}_{rk}} \times r_c$$

and for $i \neq r$,

$$r_n \to r_c - \frac{\overline{a}_{ik}}{\overline{a}_{rk}} \times r_c$$

As a result, we can write, by letting \mathbf{B}_k the matrix \mathbf{B} in iteration k,

$$\mathbf{B}_1^{-1} = \mathbf{E}_0 \mathbf{B}_0^{-1} = \mathbf{E}_0$$

$$\mathbf{B}_2^{-1} = \mathbf{E}_1 \mathbf{B}_1^{-1} = \mathbf{E}_1 \mathbf{E}_0$$

and, in general

$$\mathbf{B}_{k}^{-1} = \mathbf{E}_{k-1} \mathbf{E}_{k-2} \dots \mathbf{E}_{1} \mathbf{E}_{0}$$

which is called the product form of the inverse. Most LP software uses the revised simplex method and the product form of the inverse for computational efficiency.

The End

Questions?