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Introduction 

Consider the following problem where 𝑥1 and 𝑥2 corresponds to the # 

of product 1 (soldier) and 2 (train) produced per week, and C1, C2 and 

C3 corresponds to the constraints of resource 1 (finishing), resource 2 

(carpentry)  and resource 3 (demand), respectively: 

max 𝑧 = 3𝑥1 + 2𝑥2 

s.t. 

2𝑥1 + 𝑥2 ≤ 100 (C1=Finishing)
𝑥1 + 𝑥2 ≤ 80 (C2=Carpentry)

𝑥1 ≤ 40 (C3=Demand)

𝑥1 , 𝑥2 ≥ 0

 

The optimal solution to the problem is 𝑧 = 180; 𝑥1 = 20, 𝑥2 = 60 

where 𝐵 =  𝑥1, 𝑥2 , 𝑠3  and 𝑁 =  𝑠1, 𝑠2 . 



Introduction 

How would the optimal solution to this problem change when we 

change the parameters of this problem (objective function coefficients, 

right-hand side terms etc.)? That’s sensitivity analysis. 



Change in an Objective Function Coefficient 

Currently we earn $3 when we produce a soldier and $2 when we 

produce a train. If we increase the profit of producing a soldier 

sufficiently, would it be still optimal to produce 20 soldier and 60 trains? 

We now have 

𝑥1 = 20, 𝑥2 = 60 ⇒ 𝑧 = 3𝑥1 + 2𝑥2 = 180 

Assume that we fix all other parameters except the coefficient of 𝑥1, 

and let it be 𝑐1, the contribution to the profit by each soldier. We can 

then write 

𝑧 = 𝑐1𝑥1 + 2𝑥2 ⇒ 𝑥2 = −
𝑐1

2
𝑥1 +

𝑧

2
⇒ 𝑚 = −

𝑐1

2
 



Change in an Objective Function Coefficient 

We see that if we fix all others and change the coefficient of 𝑥1, we 

actually change the slope of the function, which means such a change 

will make the isoprofit line (𝑧-line) flatter or steeper. If we look at the 

figure, we see that if it is flatter than the carpentry constraint, then, 

what will be the new optimal point to the problem? Obviously, instead 

of point B, we will have a new optimal solution at point A! What about if 

we make the objective function steeper than the finishing constraint? 



Change in an Objective Function Coefficient 



Change in an Objective Function Coefficient 

Now, we can write 

𝑧 = 𝑐1𝑥1 + 2𝑥2 ⇒ 𝑥2 = −
𝑐1

2
𝑥1 +

𝑧

2
⇒ 𝑚𝑜 = −

𝑐1

2
 

2𝑥1 + 𝑥2 = 100 ⇒ 𝑥2 = −2𝑥1 + 50 ⇒ 𝑚𝑐1
= −2 

𝑥1 + 𝑥2 = 80 ⇒ 𝑥2 = −1𝑥1 + 80 ⇒ 𝑚𝑐2
= −1 

(1) We can thus write, objective function will be flatter than the 

carpentry constraint if 

−
𝑐1

2
> −1 ⇒ 𝑐1 < 2 

(2) Similarly, objective function will be steeper than the finishing 

constraint if 

−
𝑐1

2
< −2 ⇒ 𝑐1 > 4 



Change in an Objective Function Coefficient 

Cases (1) and (2) cause the current optimal point change from point B to 

point A and from point B to point C, respectively, where we will have a 

new set of basic and non-basic variables. 

In other words, we can say the current optimal solution (point B) will 

remain optimal if 

−
𝑐1

2
≯ −1 ⇒ 𝑐1 ≮ 2 ⇒ 𝑐1 ≥ 2

−
𝑐1

2
≮ −2 ⇒ 𝑐1 ≯ 4 ⇒ 𝑐1 ≤ 4

 ⇒ 2 ≤ 𝑐1 ≤ 4 



Change in Right-Hand Side Term 

Currently 100 units of resource 1 and 80 units of resource 2 and 40 units 

of resource 3 are available, respectively. Can we increase or decrease 

the # of available units for these constrains? Will it change the optimal 

solution? In other words, for what values of a right-hand side, will the 

current solution be optimal? 

Consider the right-hand side of the first constraint, and let it be 𝑏1. Note 

that we fix all the other parameters. 



Change in Right-Hand Side Term 

Currently, what are the constraints binding at point B (the optimal 

solution)? They are the first 2 constraints, finishing and carpentry 

constraints. 

What happens if we change 𝑏1 (currently, it is 100)? These changes will 

shift the finishing constraint parallel to its current position. 

If you are asked to solve this problem graphically, how would you 

determine the coordinates of the optimal point B? 

We note that the optimal point occurs where the first 2 constraints 

intersect. How will changing one of these right-hand sides change the 

optimal solution? 



Change in Right-Hand Side Term 



Change in Right-Hand Side Term 

We can thus state the following rule: 

As long as the intersection of the first 2 constraints is feasible, current 

optimal solution will remain optimal. 

We see that if we increase 𝑏1 until 𝑏1 > 120, where does the 

intersection of the first 2 constraints occur? What about if we decrase it 

until 𝑏1 < 80? 

Note that the current optimal solution remains optimal if 

80 ≤ 𝑏1 ≤ 120 



Shadow Prices 

When we change a parameter such as an objective coefficient or right-

hand side what changes in a model even if the current optimal solution 

remains optimal? 

Consider the right-hand side of the first constraint, and let Δ be the 

amount of change on the right-hand side of the first constraint (𝑏1). We 

then have 

2𝑥1 + 𝑥2 = 100 + Δ
𝑥1 + 𝑥2 = 80

 ⇒
𝑥1 = 20 + Δ
𝑥2 = 60 − Δ

 ⇒ 𝑧 = 3𝑥1 + 2𝑥2 = 180 + Δ 

What does it mean? 



Shadow Prices 

We define the shadow price of a constraint as the amount by which the 

objective value is improved (increase in a max, decrease in a min) when 

the right-hand side of the constraint is increased by 1 unit. 

What is the shadow price of the first constraint in the example? What 

about the second? What is different about the third constraint? 



Shadow Prices 

In general, we can write, for constraint 𝑖, for a max problem, 

 
new

optimal
𝑧

 =  
old

optimal
𝑧

 +  
shadow

price
𝑖

 ×  Δ𝑖  

and for a min problem, 

 
new

optimal
𝑧

 =  
old

optimal
𝑧

 −  
shadow

price
𝑖

 ×  Δ𝑖  



Some Definitions 

Assume that we have a max LP with 𝑛 variables and 𝑚 constraints as 

follows where we want max 𝑧 or min 𝑧 such that 

𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛  

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮ ⋱ ⋮ = ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛 𝑥𝑛 = 𝑏𝑚

𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛 ≥ 0

 



Some Definitions 

For instance, consider the Dakota example without 𝑥2 ≤ 5 constraint: 

max 𝑧 = 60𝑥1 + 30𝑥2 + 20𝑥3 + 0𝑠1 + 0𝑠2 + 0𝑠3 

8𝑥1 + 6.0𝑥2 + 𝑥3 + 𝑠1 = 48

4𝑥1 + 2.0𝑥2 + 1.5𝑥3 + + 𝑠2 = 20

2𝑥1 + 1.5𝑥2 + 0.5𝑥3 + + 𝑠3 = 8
𝑥1 , 𝑥2 , 𝑥3 , 𝑠1 , 𝑠2 , 𝑠3 ≥ 0

 



Some Definitions 

The optimal solution for Dakota: 

𝑧 + 5.00𝑥2 + 10𝑠2 + 10.0𝑠3 = 280

− 2.00𝑥2 + + 𝑠1 + 2𝑠2 − 8.0𝑠3 = 48

− 2.00𝑥2 + 𝑥3 + + 2𝑠2 − 4.0𝑠3 = 20

𝑥1 + 1.25𝑥2 + + − 0.5𝑠2 + 1.5𝑠3 = 8

𝑥1 , 𝑥2 , 𝑥3 , 𝑠1 , 𝑠2 , 𝑠3 ≥ 0

 



Some Definitions 

For such an LP with an optimal solution, we define 𝐵 and 𝑁 as the set of 

basic and non-basic variables, and let 𝐱𝐵  and 𝐱𝑁  as the 𝑚 × 1 and 

 𝑛 − 𝑚 × 1 vectors of basic and non-basic variables, respectively. 

For this solution, we have 

𝐱𝐵 =  

𝑠1

𝑥3

𝑥1

  and 𝐱𝑁 =  

𝑥2

𝑠2

𝑠3

  



Some Definitions 

We define 𝐜𝐵  and 𝐜𝑁  as the 1 × 𝑚 and 1 ×  𝑛 − 𝑚  vectors objective 

function coefficients of basic and non-basic variables, respectively. 

For our example, we have 

𝐜𝐵 =  0 20 60  and 𝐜𝑁 =  30 0 0  



Some Definitions 

Let 𝐁 be the 𝑚 × 𝑚 matrix of constraint coefficients of basic variables in 

initial BFS. 

For our example, 

𝐁 =  
1 1.0 8
0 0.5 4
0 0.5 2

  

Let 𝐍 be the 𝑚 ×  𝑛 − 𝑚  matrix of constraint coefficients of non-basic 

variables in initial BFS. 

𝐍 =  
6.0 0 0
2.0 1 0
1.5 0 1

  



Some Definitions 

Let 𝐚𝑗  be the 𝑚 × 1 vector of constraint coefficients of variable 𝑥𝑗  in 

initial BFS. 

𝐚2 =  
6.0
2.0
1.5

  and 𝐚𝑠2
=  

0
1
0
  

We define 𝐛 as the 𝑚 × 1  vector of right-hand side terms. 

 

𝐛 =  
48
20
8

  



Some Definitions 

Our model can be written as 

𝑧 = 𝐜𝐵𝐱𝐵 + 𝐜𝑁𝐱𝑁 

s.t. 

𝐁𝐱𝐵 + 𝐍𝐱𝑁 = 𝐛
𝐱𝐵 , 𝐱𝑁 ≥ 𝟎

 



Some Definitions 

Using this representation, we can write, for the Dakota example 

𝑧 =  0 20 60  

𝑠1

𝑥3

𝑥1

 +  30 0 0  

𝑥2

𝑠2

𝑠3

 

 
1 1.0 8
0 1.5 4
0 0.5 2

  

𝑠1

𝑥3

𝑥1

 +  
6.0 0 0
2.0 1 0
1.5 0 1

  

𝑥2

𝑠2

𝑠3

 = 48

 

𝑠1

𝑥3

𝑥1

 ,  

𝑥2

𝑠2

𝑠3

 ≥  
0
0
0
 

 



Some Definitions 

In the following equations, 

𝐁𝐱𝐵 + 𝐍𝐱𝑁 = 𝐛 

If we multiply the expression by 𝐁−1, we obtain 

𝐁−1𝐁𝐱𝐵 + 𝐁−1𝐍𝐱𝑁 = 𝐁−1𝐛 ⇒ 𝐱𝐵 + 𝐁−1𝐍𝐱𝑁 = 𝐁−1𝐛 



Some Definitions 

For our Example, we have 

𝐁 =  
1 1.0 8
0 1.5 4
0 0.5 2

 ⇒ 𝐁−1 =  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  

We can then write 

 

𝑠1

𝑥3

𝑥1

 +  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
6.0 0 0
2.0 1 0
1.5 0 1

 
                     

 

𝑥2

𝑠2

𝑠3

 =  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
48
20
8

 
               

 

𝑠1

𝑥3

𝑥1

 +  
6.0 0 0
2.0 1 0
1.5 0 1

  

𝑥2

𝑠2

𝑠3

 =  
24
8
2

 

 



Some Definitions 

For the objective function, we can write, 

𝑧 = 𝐜𝐵𝐱𝐵 + 𝐜𝑁𝐱𝑁 ⇒ 𝑧 − 𝐜𝐵𝐱𝐵 − 𝐜𝑁𝐱𝑁 = 0 

𝐜𝐵𝐁−1𝐁𝐱𝐵 + 𝐜𝐵𝐁−1𝐍𝐱𝑁 = 𝐜𝐵𝐁−1𝐛 ⇒ 𝐜𝐵𝐱𝐵 + 𝐜𝐵𝐁−1𝐍𝐱𝑁 = 𝐜𝐵𝐁−1𝐛 

By organizing the above expressions, 

𝑧 − 𝐜𝐵𝐱𝐵 − 𝐜𝑁𝐱𝑁 = 0

𝐜𝐵𝐱𝐵 + 𝐜𝐵𝐁−1𝐍𝐱𝑁 = 𝐜𝐵𝐁−1𝐛
 

We obtain 

𝑧 +  𝐜𝐵𝐁−1𝐍 − 𝐜𝑁 𝐱𝑁 = 𝐜𝐵𝐁−1𝐛 

By letting 𝑐 𝑗  be the coefficient of 𝑥𝑗  in the objective row, 

 𝑐 𝑗 = 𝐜𝐵𝐁−1𝐚𝑗 − 𝑐𝑗  



Some Definitions 

For our example, we have  

𝐜𝐵 =  0 20 60  and 𝐁−1 =  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  

We can then write 

𝑐 2 = 𝐜𝐵𝐁−1𝐚2 − 𝑐2 

=  0 20 60  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
6.0
2.0
1.5

 − 30 

= 5 



Some Definitions 

𝑐 𝑠2
= 𝐜𝐵𝐁−1𝐚𝑠2

− 𝑐𝑠2
 

=  0 20 60  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
0
1
0
 − 0 

= 10 

𝑐 𝑠3
= 𝐜𝐵𝐁−1𝐚𝑠3

− 𝑐𝑠3
 

=  0 20 60  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
0
0
1
 − 0 

= 10 



Some Definitions 

The optimal objective function value is 

𝑧 = 𝐜𝐵𝐁−1𝐛 =  0 20 60  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
48
20
8

 = 280 



Some Definitions 

Example: 

Compute the solution for the following LP when 𝐵 =  𝑥2, 𝑠2 . 

max 𝑧 = 𝑥1 + 4𝑥2 

𝑥1 + 2𝑥2 ≤ 6
2𝑥1 + 𝑥2 ≤ 8
𝑥1 , 𝑥2 ≥ 0

 

Standard form of the model is 

max 𝑧 = 𝑥1 + 4𝑥2 

𝑥1 + 2𝑥2 + 𝑠1 = 6

2𝑥1 + 𝑥2 + 𝑠2 = 8
𝑥1 , 𝑥2 , 𝑠1 , 𝑠2 ≥ 0

 



Some Definitions 

Example: 

We start with 

𝐁 =  
2 0
1 1

 ⇒ 𝐁−1 =  
1 2 0

− 1 2 1
  

𝐚 1 = 𝐁−1𝐚1 =  
1 2 0

− 1 2 1
  

1
2
 =  

1 2 

3 2 
  

𝐚 𝑠1
= 𝐁−1𝐚𝑠1

=  
1 2 0

− 1 2 1
  

1
0
 =  

1 2 

− 1 2 
  

The right-hand side 𝐛 =  
1 2 0

− 1 2 1
  

6
8
 =  

3
5
  

𝑐 1 = 𝐜𝐵𝐁−1𝐚1 − 𝑐1 = 1 

𝑐 𝑠1
= 𝐜𝐵𝐁−1𝐚𝑠1

− 𝑐𝑠1
= 2 

Finally, the objective function value is 𝑧 = 𝐜𝐵𝐁−1𝐛 = 12 



Sensitivity Analysis 

 Changing the objective function coefficient of a non-basic variable 

 Changing the objective function coefficient of a basic variable 

 Changing the right-hand side of an equation 

 Changing the column of a non-basic variable 

 Adding a new variable (or activity) 

 Adding a new constraint 



Sensitivity Analysis 

In this section, we will consider the following example: 

max 𝑧 = 60𝑥1 + 30𝑥2 + 20𝑥3 + 0𝑠1 + 0𝑠2 + 0𝑠3 

8𝑥1 + 6.0𝑥2 + 𝑥3 + 𝑠1 = 48

4𝑥1 + 2.0𝑥2 + 1.5𝑥3 + + 𝑠2 = 20

2𝑥1 + 1.5𝑥2 + 0.5𝑥3 + + 𝑠3 = 8
𝑥1 , 𝑥2 , 𝑥3 , 𝑠1 , 𝑠2 , 𝑠3 ≥ 0

 

The optimal solution for Dakota: 

𝑧 + 5.00𝑥2 + 10𝑠2 + 10.0𝑠3 = 280

− 2.00𝑥2 + + 𝑠1 + 2𝑠2 − 8.0𝑠3 = 48

− 2.00𝑥2 + 𝑥3 + + 2𝑠2 − 4.0𝑠3 = 20

𝑥1 + 1.25𝑥2 + + − 0.5𝑠2 + 1.5𝑠3 = 8

𝑥1 , 𝑥2 , 𝑥3 , 𝑠1 , 𝑠2 , 𝑠3 ≥ 0

 



Sensitivity Analysis 

Objective Function Coefficient of a Non-Basic Variable 

Currently, we have 𝑐2 = 30. For what values of 𝑐2, will the current 

optimal solution remain optimal? 

When we change 𝑐2, what will change in the solution? 

We can say that, if, (for a max problem, like this), 𝑐 2 ≥ 0, the current 

solution remains optimal. 

Let 𝑐2 = 30 + Δ. Since 𝐜𝐵𝐁−1 =  0 10 10 , we have 

𝑐 2 =  0 10 10  
6.0
2.0
1.5

 −  30 + Δ = 5 − Δ 

We can then write, the current solution is still optimal if 

𝑐 2 ≥ 0 ⇒ 5 − Δ ≥ 0 ⇒ Δ ≤ 5 ⇒ 𝑐2 ≤ 35 



Sensitivity Analysis 

Objective Function Coefficient of a Non-Basic Variable 

If, for instance, 𝑐2 = 40, what will happen? We then have 

𝑐 2 =  0 10 10  
6.0
2.0
1.5

 − 40 = −5 

meaning the current solution is not optimal anymore. We now have a 

sub-optimal solution and perform the simplex as follows: 

𝑧 − 5.00𝑥2 + 10.0𝑠2 + 10.0𝑠3 = 280

− 2.00𝑥2 + 𝑠1 + 2.0𝑠2 − 8.0𝑠3 = 48

− 2.00𝑥2 + 𝑥3 + 2.0𝑠2 − 4.0𝑠3 = 20

𝑥1 + 1.25𝑥2 − 0.5𝑠2 + 1.5𝑠3 = 8

 

𝑧 + 4.0𝑥1 + 8.0𝑠2 + 16.0𝑠3 = 288.0

1.6𝑥1 + 𝑠1 + 1.2𝑠2 − 5.6𝑠3 = 27.2

1.6𝑥1 + 𝑥3 + + 1.2𝑠2 − 1.6𝑠3 = 11.2

0.8𝑥1 + 𝑥2 − 0.4𝑠2 + 1.2𝑠3 = 1.6

 



Sensitivity Analysis 

Objective Function Coefficient of a Basic Variable 

Consider the objective function coefficient of 𝑥1. Currently we have 

𝑐1 = 60. 

We let 𝑐1 = 60 + Δ, and then, 

𝐜𝐵𝐁−1 =  0 20 60 + Δ  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  

=  0 10 − 0.5Δ 10 + 1.5Δ  



Sensitivity Analysis 

Objective Function Coefficient of a Basic Variable 

Now, we compute the new objective row 

𝑐 2 = 𝐜𝐵𝐁−1𝐚2 − 𝑐2 

=  0 10 − 0.5Δ 10 + 1.5Δ  
6.0
2.0
1.5

 − 30 

= 5 + 1.25Δ 

𝑐 𝑠2
= 𝐜𝐵𝐁−1𝐚𝑠2

− 𝑐𝑠2
 

=  0 10 − 0.5Δ 10 + 1.5Δ  
6.0
2.0
1.5

 − 30 

= 10 − 0.5Δ 

𝑐 𝑠3
= 𝐜𝐵𝐁−1𝐚𝑠3

− 𝑐𝑠2
 

=  0 10 − 0.5Δ 10 + 1.5Δ  
6.0
2.0
1.5

 − 30 

= 10 + 1.5Δ 



Sensitivity Analysis 

Objective Function Coefficient of a Basic Variable 

We thus have 

5 + 1.25Δ ≥ 0
10 − 0.5Δ ≥ 0
10 + 1.5Δ ≥ 0

 ⇒ −4 ≤ Δ ≤ 20 



Sensitivity Analysis 

Objective Function Coefficient of a Basic Variable 

If, 𝑐1 = 100, by proceeding similarly, we obtain the sub-optimal 

solution as follows: 

𝑧 + 55.00𝑥2 − 10.0𝑠2 + 70.0𝑠3 = 360

− 2.00𝑥2 + 𝑠1 + 2.0𝑠2 − 8.0𝑠3 = 48

− 2.00𝑥2 + 𝑥3 + 2.0𝑠2 − 4.0𝑠3 = 20

𝑥1 + 1.25𝑥2 − 0.5𝑠2 + 1.5𝑠3 = 8

 

and obtain the following optimal solution after another iteration: 

𝑧 + 45.00𝑥2 + 5.00𝑥3 + 50.0𝑠3 = 400

− 𝑥3 + 𝑠1 − 4.0𝑠3 = 16

− 𝑥2 + 0.50𝑥3 − 2.0𝑠3 = 4

𝑥1 + 0.75𝑥2 + 0.25𝑥3 + 𝑠2 + 0.5𝑠3 = 4

 



Sensitivity Analysis 

Reduced Cost 

This analysis allows us to define a concept called reduced cost. 

The reduced cost for a non-basic variable is the maximum amount by 

which the variable’s objective function coefficient can be increased 

before the current basis becomes sub-optimal. 



Sensitivity Analysis 

Changing the Right-Hand Side of an Equation 

We can say that as long as the right-hand side of each constraint in the 

optimal tableau remains non-negative, the current solution remains 

feasible and optimal. 



Sensitivity Analysis 

Changing the Right-Hand Side of an Equation 

If for instance, if we change 𝑏2 to 𝑏2 + Δ, we have 

𝐛 = 𝐁−1𝐛 =  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
48

20 + Δ
8

 =  
24 + 2Δ
8 + 2Δ

2 − 0.5Δ
  

We thus have 

24 + 2.0Δ ≥ 0
8 + 2.0Δ ≥ 0
2 − 0.5Δ ≥ 0

 ⇒ −4 ≤ Δ ≤ 4 ⇒ 16 ≤ 𝑏2 ≤ 24 



Sensitivity Analysis 

Changing the Right-Hand Side of an Equation 

What about the variables and objective function? If, for instance, 

𝑏2 = 22, we have 

 

𝑠1

𝑥3

𝑥1

 = 𝐁−1𝐛 =  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
48
22
8

 =  
28
12
1

  

and 

𝑧 = 𝐜𝐵𝐁−1𝐛 =  0 10 10  
48
22
8

 = 300 



Sensitivity Analysis 

Changing the Right-Hand Side of an Equation 

If 𝑏2 = 30, current solution is no longer optimal. We then have 

 

𝑠1

𝑥3

𝑥1

 = 𝐁−1𝐛 =  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  
48
30
8

 =  
44
28
−3

  

and 

𝑧 = 𝐜𝐵𝐁−1𝐛 =  0 10 10  
48
30
8

 = 380 



Sensitivity Analysis 

Changing the Right-Hand Side of an Equation 

𝑧 + 5.00𝑥2 + 10.0𝑠2 + 10.0𝑠3 = 480

− 2.00𝑥2 + 𝑠1 + 2.0𝑠2 − 8.0𝑠3 = 44

− 2.00𝑥2 + 𝑥3 + 2.0𝑠2 − 4.0𝑠3 = 28

𝑥1 + 1.25𝑥2 − 0.5𝑠2 + 1.5𝑠3 = −3

 

What to do now? We will come back to this later!!! 



Sensitivity Analysis 

Changing the Column of a Non-Basic Variable 

When the column of a non-basic variable changes, we need to check the 

objective row of the variable if it violates the optimality condition or 

not. To do it, we price out that variable, that is, we compute, 

𝑐 𝑗 = 𝐜𝐵𝐁−1𝐚𝑗 − 𝑐𝑗  



Sensitivity Analysis 

Changing the Column of a Non-Basic Variable 

If, for instance, we change the column of the non-basic variable 𝑥2 from 

𝑐2 = 30 to 𝑐2 = 43 and 𝐚2 =  6 2 1.5 𝑇 to 𝐚2 =  5 2 2 𝑇,  

𝑐 2 = 𝐜𝐵𝐁−1𝐚2 − 𝑐2 

=  0 10 10  
5
2
2
 − 43 

= −3 

which means the current solution is no longer optimal. We then have 

the following sub-optimal solution: 



Sensitivity Analysis 

Adding a New Variable or Activity 

Assume that we have a new product that can be sold for $15 and use 1 

board foot of lumber, and 1 hour of carpentry, finishing hours. That is 

𝑐4 = 15 and 𝐚4 =  1 1 1 𝑇  

To find out if the current solution remains optimal, we price out the 

new variable. 

𝑐 4 = 𝐜𝐵𝐁−1𝐚4 − 𝑐4 

=  0 10 10  
1
1
1
 − 15 

= 5 ≥ 0 ⇒ current solution remains optimal 



Sensitivity Analysis 

Summary 

We can summarize our discussion using the following table: 

Change Effect Optimality Condition 

Changing 𝑐𝑗  (non-basic) Compute 𝑐 𝑗  𝑐 𝑗 ≥ 0 

Changing 𝑐𝑗  (basic) Compute Row 0 𝐜 ≥ 0 

Changing 𝑏𝑖  Compute RHS 𝐛 ≥ 0 
Changing 𝐚𝑗  Compute 𝐚 𝑗  and 𝑐 𝑗  𝑐 𝑗 ≥ 0 

New Variable 𝑥𝑗  Compute 𝐚 𝑗  and 𝑐 𝑗  𝑐 𝑗 ≥ 0 

 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule)-Objective Function 

Case 1: 

All variables whose objective function coefficients are changed have 

nonzero reduced costs in the optimal row 0. 

Case 2: 

At least one variable whose objective function coefficient is changed has 

a reduced cost of zero. 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule)-Objective Function 

In Case 1, the current basis remains optimal if and only if the objective 

function coefficient for each variable remains within the allowable 

range. If the current basis remains optimal, then both the values of the 

decision variables and objective function remain unchanged. If the 

objective function coefficient for any variable is outside its allowable 

range, then the current basis is no longer optimal. 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule)-Objective Function 

In Case 2, we can often show that the current basis remains optimal by 

using the 100% Rule. Let 

𝑐𝑗 = original objective function coefficient 

Δ𝑐𝑗 = change in 𝑐𝑗  

𝑖𝑗 = max allowable increase in 𝑐𝑗  

𝑑𝑗 = max allowable decrease in 𝑐𝑗  



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule)-Objective Function 

We then define the ratio, 𝑟𝑗  as 

𝑟𝑗 =

 
 
 

 
 

Δ𝑐𝑗

𝑖𝑗
, Δ𝑐𝑗 ≥ 0

−
Δ𝑐𝑗

𝑑𝑗
, Δ𝑐𝑗 ≤ 0

 

 𝑟𝑗
𝑗

≤ 1 ⇒ current solution is optimal 

 𝑟𝑗
𝑗

> 1 ⇒ current solution might or might not be optimal 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule)-RHS 

Case 1: 

All constraints whose right-hand sides are being modified are 

nonbinding constraints. 

Case 2: 

At least one of the constraints whose right-hand side is being modified 

is a binding constraint. 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule)-RHS 

In Case 1, the current basis remains optimal if and only if the objective 

function coefficient for each variable remains within the allowable 

range. If the current basis remains optimal, then both the values of the 

decision variables and objective function remain unchanged. If the 

objective function coefficient for any variable is outside its allowable 

range, then the current basis is no longer optimal. 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule)-RHS 

In Case 2, we can often show that the current basis remains optimal by 

using the 100% Rule. Let 

𝑏𝑗 = original right-hand side term 

Δ𝑏𝑗 = change in 𝑏𝑗  

𝑖𝑗 = max allowable increase in 𝑏𝑗  

𝑑𝑗 = max allowable decrease in 𝑏𝑗  



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule)-RHS 

We then define the ratio, 𝑟𝑗  as 

𝑟𝑗 =

 
 
 

 
 

Δ𝑏𝑗

𝑖𝑗
, Δ𝑏𝑗 ≥ 0

−
Δ𝑏𝑗

𝑑𝑗
, Δ𝑏𝑗 ≤ 0

 

 𝑟𝑗
𝑗

≤ 1 ⇒ current solution is optimal 

 𝑟𝑗
𝑗

> 1 ⇒ current solution might or might not be optimal 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule) 

Example for Case 1: 

Consider the following example (Diet Problem): 

min 𝑧 = 50𝑥1 + 20𝑥2 + 30𝑥3 + 80𝑥4 

400𝑥1 + 200𝑥2 + 150𝑥3 + 500𝑥4 ≥ 500

3𝑥1 + 2𝑥2 + + ≥ 6
2𝑥1 + 2𝑥2 + 4𝑥3 + 4𝑥4 ≥ 10
2𝑥1 + 4𝑥2 + 𝑥3 + 5𝑥4 ≥ 8
𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0

 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule) 

We have the following ranges for the corresponding parameters: 

𝑐1 = 50 → −27.5 ≤ Δ < ∞ 

𝑐2 = 20 → −5 ≤ Δ < 18.333 

𝑐3 = 30 → −30 ≤ Δ < 10 

𝑐4 = 80 → −50 ≤ Δ < ∞ 

If we change the parameters as 𝑐1 = 60 and 𝑐4 = 50, since both have 

non-zero reduced costs, we have 

50 − 27.5 = 22.5 ≤ 𝑐1 = 60 ≤ 50 + ∞ = ∞ 

80 − 50 = 30 ≤ 𝑐4 = 50 ≤ 80 + ∞ = ∞ 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule) 

Another Example for Case 1: 

If we change the parameters as 𝑐1 = 40 and 𝑐4 = 25, since both have 

non-zero reduced costs, we have 

50 − 27.5 = 22.5 ≤ 𝑐1 = 40 ≤ 50 + ∞ = ∞ 

80 − 50 = 30 ≰ 𝑐4 = 25 ≤ 80 + ∞ = ∞ 

The current solution is no longer optimal. The problem must be solved 

again. 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule) 

Example for Case 2: 

Consider the following example (Dakota Problem): 

max 𝑧 = 60𝑥1 + 30𝑥2 + 20𝑥3 + 0𝑠1 + 0𝑠2 + 0𝑠3 

8𝑥1 + 6.0𝑥2 + 𝑥3 + 𝑠1 = 48

4𝑥1 + 2.0𝑥2 + 1.5𝑥3 + + 𝑠2 = 20

2𝑥1 + 1.5𝑥2 + 0.5𝑥3 + + 𝑠3 = 8
𝑥1 , 𝑥2 , 𝑥3 , 𝑠1 , 𝑠2 , 𝑠3 ≥ 0

 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule) 

The optimal solution for Dakota: 

𝑧 + 5.00𝑥2 + 10.0𝑠2 + 10.0𝑠3 = 280

− 2.00𝑥2 + + 𝑠1 + 2.0𝑠2 − 8.0𝑠3 = 24

− 2.00𝑥2 + 𝑥3 + + 2.0𝑠2 − 4.0𝑠3 = 8

𝑥1 + 1.25𝑥2 + + − 0.5𝑠2 + 1.5𝑠3 = 2

𝑥1 , 𝑥2 , 𝑥3 , 𝑠1 , 𝑠2 , 𝑠3 ≥ 0

 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule) 

We have the following ranges for the corresponding parameters: 

𝑐1 = 60 → −4 ≤ Δ < 20 

𝑐2 = 30 → −∞ ≤ Δ < 5 

𝑐3 = 20 → −5 ≤ Δ < 2.5 



Sensitivity Analysis 

Multiple Parameter Changes (100% Rule) 

If we change the parameters as 𝑐1 = 70, 𝑐3 = 18, 

𝑟1 =
Δ𝑐1

𝑖1
=

10

20
= 0.5 

𝑟2 = 0 

𝑟3 =
Δ𝑐3

𝑖3
=

2

5
= 0.4 

 𝑟𝑗

3

𝑗 =1

= 0.9 ≤ 1 ⇒ current solution is optimal 



Duality 

Consider the following max problem (normal max problem): 

max 𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛  

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

⋮ ⋮ ⋱ ⋮ ≤ ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛 𝑥𝑛 ≤ 𝑏𝑚

𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛 ≥ 0

 



Duality 

The dual of the problem is given as follows (normal min problem): 

min 𝑤 = 𝑏1𝑦1 + 𝑏2𝑦2 + ⋯ + 𝑏𝑚𝑦𝑚  

𝑎11𝑦1 + 𝑎21𝑦2 + ⋯ + 𝑎𝑚1𝑦𝑚 ≥ 𝑐1

𝑎12𝑦1 + 𝑎22𝑦2 + ⋯ + 𝑎𝑚2𝑦𝑚 ≥ 𝑐2

⋮ ⋮ ⋱ ⋮ ≥ ⋮
𝑎1𝑛𝑦1 + 𝑎2𝑛𝑦2 + ⋯ + 𝑎𝑚𝑛 𝑦𝑚 ≥ 𝑐𝑛

𝑦1 , 𝑦2 , ⋯ , 𝑦𝑚 ≥ 0

 



Duality 

Consider the Dakota Example: 

max 𝑧 = 60𝑥1 + 30𝑥2 + 20𝑥3 

8𝑥1 + 6.0𝑥2 + 𝑥3 ≤ 48
4𝑥1 + 2.0𝑥2 + 1.5𝑥3 ≤ 20
2𝑥1 + 1.5𝑥2 + 0.5𝑥3 ≤ 8
𝑥1 , 𝑥2 , 𝑥3 ≥ 0

 



Duality 

The dual of the problem is then 

min 𝑤 = 48𝑦1 + 20𝑦2 + 8𝑦3 

8𝑦1 + 4.0𝑦2 + 2𝑦3 ≥ 60
6𝑦1 + 2.0𝑦2 + 1.5𝑦3 ≥ 30
𝑦1 + 1.5𝑦2 + 0.5𝑦3 ≥ 20
𝑦1 , 𝑦2 , 𝑦3 ≥ 0

 



Duality 

Consider the Diet Example: 

min 𝑤 = 50𝑦1 + 20𝑦2 + 30𝑦3 + 80𝑦4 

400𝑦1 + 200𝑦2 + 150𝑦3 + 500𝑦4 ≥ 500

3𝑦1 + 2𝑦2 ≥ 6
2𝑦1 + 2𝑦2 + 4𝑦3 + 4𝑦4 ≥ 10
2𝑦1 + 2𝑦2 + 𝑦3 + 5𝑦4 ≥ 8
𝑦1 , 𝑦2 , 𝑦3 , 𝑦4 ≥ 0

 



Duality 

The dual of the problem is then 

max 𝑧 = 500𝑥1 + 6𝑥2 + 10𝑥3 + 8𝑥4 

400𝑥1 + 3𝑥2 + 2𝑥3 + 2𝑥4 ≤ 50
200𝑥1 + 2𝑥2 + 2𝑥3 + 4𝑥4 ≤ 20

150𝑥1 + 4𝑥3 + 𝑥4 ≤ 30

500𝑥1 + 4𝑥3 + 5𝑥4 ≤ 80
𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0

 



Duality 

If we have a non-normal LP, we can consider the following 2 

alternatives: 

 Transform the non-normal LP to a normal one and write the 

dual of the LP. 

 Directly write the dual of the non-normal LP. 



Duality 

Example of a Non-Normal LP: 

max 𝑧 = 2𝑥1 + 𝑥2 

𝑥1 + 𝑥2 = 2
2𝑥1 − 𝑥2 ≥ 3
𝑥1 − 𝑥2 ≤ 1

𝑥1 ≥ 0

𝑥2 : urs

 



Duality 

Another Example of a Non-Normal LP: 

min 𝑤 = 2𝑦1 + 4𝑦2 + 6𝑦3 

𝑦1 + 2𝑦2 + 𝑦3 ≥ 2

𝑦1 − 𝑦3 ≥ 1

𝑦2 + 𝑦3 = 1

2𝑦1 + 𝑦2 ≤ 3

𝑦1 : urs

𝑦2 , 𝑦3 ≥ 0

 



Duality 

Transform the non-normal LP to a normal one and write the dual of the 

LP as 

 Convert each ≤ (≥) type constraint to a ≥ (≤) type constraint. 

 Convert each equation into two inequalities. 

 Represent each unrestricted variable using two non-negative 

variables. 

 Write the dual of the transformed normal LP. 



Duality 

Directly write the dual of the non-normal max (min) LP as 

 For each constraint and variable in normal form, write the 

corresponding dual variable and constraint as before. 

 For each ≥ (≤) type constraint, the corresponding dual variable 

is non-positive. 

 For each non-positive variable, the corresponding dual 

constraint is a ≤ (≥) type constraint. 



Duality 

Consider the Dakota Example: 

max 𝑧 = 60𝑥1 + 30𝑥2 + 20𝑥3 

8𝑥1 + 6.0𝑥2 + 𝑥3 ≤ 48
4𝑥1 + 2.0𝑥2 + 1.5𝑥3 ≤ 20
2𝑥1 + 1.5𝑥2 + 0.5𝑥3 ≤ 8
𝑥1 , 𝑥2 , 𝑥3 ≥ 0

 



Duality 

The dual of the problem is then 

min 𝑤 = 48𝑦1 + 20𝑦2 + 8𝑦3 

8𝑦1 + 4.0𝑦2 + 2𝑦3 ≥ 60
6𝑦1 + 2.0𝑦2 + 1.5𝑦3 ≥ 30
𝑦1 + 1.5𝑦2 + 0.5𝑦3 ≥ 20
𝑦1 , 𝑦2 , 𝑦3 ≥ 0

 



Duality 

Note that the first constraint is associated with desks, the second with 

tables and the third with chairs. Also, note that 𝑦1, 𝑦2 and 𝑦3 are 

associated with lumber, finishing hours and carpentry hours, 

respectively. Suppose that someone wants to purchase all of Dakota’s 

resources. She must determine the price she is willing to pay for a unit 

of each resource. We thus define 

 𝑦1 = price for 1 board ft. of lumber 

 𝑦2 = price for 1 finishing hour 

 𝑦3 = price for 1 carpentry hour 



Duality 

Consider the Diet Example: 

min 𝑤 = 50𝑦1 + 20𝑦2 + 30𝑦3 + 80𝑦4 

400𝑦1 + 200𝑦2 + 150𝑦3 + 500𝑦4 ≥ 500

3𝑦1 + 2𝑦2 ≥ 6
2𝑦1 + 2𝑦2 + 4𝑦3 + 4𝑦4 ≥ 10
2𝑦1 + 2𝑦2 + 𝑦3 + 5𝑦4 ≥ 8
𝑦1 , 𝑦2 , 𝑦3 , 𝑦4 ≥ 0

 



Duality 

The dual of the problem is then 

max 𝑧 = 500𝑥1 + 6𝑥2 + 10𝑥3 + 8𝑥4 

400𝑥1 + 3𝑥2 + 2𝑥3 + 2𝑥4 ≤ 50
200𝑥1 + 2𝑥2 + 2𝑥3 + 4𝑥4 ≤ 20

150𝑥1 + 4𝑥3 + 𝑥4 ≤ 30

500𝑥1 + 4𝑥3 + 5𝑥4 ≤ 80
𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0

 



Duality 

Now suppose that there is a salesperson that sells calories, chocolate, 

sugar and fat and wants to ensure that a dieter will meet all of our daily 

requirements by purchasing calories, chocolate, sugar and fat while 

maximizing her profit. We must then determine 

 𝑥1 = price per calorie to charge dieter 

 𝑥2 = price per ounce of chocolate to charge dieter 

 𝑥3 = price per ounce of sugar to charge dieter 

 𝑥4 = price per ounce of fat to charge dieter 



Duality 

Consider the following max problem (normal max problem): 

max 𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛  

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

⋮ ⋮ ⋱ ⋮ ≤ ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛 𝑥𝑛 ≤ 𝑏𝑚

𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛 ≥ 0

 



Duality 

The dual of the problem is given as follows (normal min problem): 

min 𝑤 = 𝑏1𝑦1 + 𝑏2𝑦2 + ⋯ + 𝑏𝑚𝑦𝑚  

𝑎11𝑦1 + 𝑎21𝑦2 + ⋯ + 𝑎𝑚1𝑦𝑚 ≥ 𝑐1

𝑎12𝑦1 + 𝑎22𝑦2 + ⋯ + 𝑎𝑚2𝑦𝑚 ≥ 𝑐2

⋮ ⋮ ⋱ ⋮ ≥ ⋮
𝑎1𝑛𝑦1 + 𝑎2𝑛𝑦2 + ⋯ + 𝑎𝑚𝑛 𝑦𝑚 ≥ 𝑐𝑛

𝑦1 , 𝑦2 , ⋯ , 𝑦𝑚 ≥ 0

 



Duality 

Lemma (Weak Duality): 
 
Let 𝐱𝑇 =  𝑥1 𝑥2 … 𝑥𝑛   and 𝐲 =  𝑦1 𝑦2 … 𝑦𝑚   be any feasible 
solutions to the primal and dual, respectively. We can then write 
 

𝑧 ≤ 𝑤 
 
 



Duality 

Proof: 

Multiply the 𝑖th primal constraint with 𝑦𝑖 ≥ 0, 

 𝑦𝑖𝑎𝑖𝑗 𝑥𝑗

𝑛

𝑗 =1

≤ 𝑏𝑖𝑦𝑖 , 𝑖 = 1, … , 𝑚 

If we sum the above expressions for all primal constraints, 

  𝑦𝑖𝑎𝑖𝑗 𝑥𝑗

𝑛

𝑗 =1

𝑚

𝑖=1

≤  𝑏𝑖𝑦𝑖

𝑚

𝑖=1

 



Duality 

Similarly, multiply the 𝑗th dual constraint with 𝑥𝑗 ≥ 0, 

 𝑥𝑗𝑎𝑖𝑗 𝑦𝑗

𝑚

𝑖=1

≥ 𝑐𝑗𝑥𝑗 , 𝑗 = 1, … , 𝑛 

If we sum the above expressions for all dual constraints, 

  𝑦𝑖𝑎𝑖𝑗 𝑥𝑗

𝑛

𝑗 =1

𝑚

𝑖=1

≥  𝑐𝑗𝑥𝑗

𝑛

𝑗 =1

 



Duality 

Combining the above expressions, we obtain 

 𝑐𝑗𝑥𝑗

𝑛

𝑗 =1     
𝑧

≤   𝑦𝑖𝑎𝑖𝑗 𝑥𝑗

𝑛

𝑗 =1

𝑚

𝑖=1

≤  𝑏𝑖𝑦𝑖

𝑚

𝑖=1     
𝑤

 



Duality 

For the Dakota Example, we see that  𝑥1 , 𝑥2 , 𝑥3 =  1,1,1  is a primal 

feasible solution with 𝑧 = 110. Weak Duality implies that any dual 

feasible solution  𝑦1 , 𝑦2 , 𝑦3  must satisfy 

48𝑦1 + 20𝑦2 + 8𝑦3 ≥ 110 

Check that! 



Duality 



Duality 

Lemma: 
 
Let 𝐱 𝑇 =  𝑥1 𝑥2 … 𝑥𝑛   and 𝐲 =  𝑦1 𝑦2 … 𝑦𝑚   be any feasible 
solutions to the primal and dual, respectively. 
 
If 𝐜𝐱 = 𝐲 𝐛, 𝐱  is optimal for the primal and 𝐲  is optimal for the dual. 
 
 



Duality 

Lemma: 
 
If the primal is unbounded, then, the dual is infeasible. 
 
 

Lemma: 
 
If the dual is unbounded, then, the primal is infeasible. 
 
 



Duality 

Theorem: 
 
If 𝐵 is the set of an optimal basis for primal, then, 𝑐𝐵𝐵−1 is an optimal 
solution to the dual and 𝑧 = 𝑤 . 
 
 



Duality 

The optimal solution for Dakota: 

𝑧 + 5.00𝑥2 0𝑠1 + 10.0𝑠2 + 10.0𝑠3 = 280

− 2.00𝑥2 + + 𝑠1 + 2. 0𝑠2 − 8.0𝑠3 = 24

− 2.00𝑥2 + 𝑥3 + + 2.0𝑠2 − 4.0𝑠3 = 8

𝑥1 + 1.25𝑥2 + + − 0.5𝑠2 + 1.5𝑠3 = 2

𝑥1 , 𝑥2 , 𝑥3 , 𝑠1 , 𝑠2 , 𝑠3 ≥ 0

 



Duality 

𝑧 = 𝐜𝐵𝐁−1𝐛 

=  0 20 60  
1 2.0 −8.0
0 2.0 −4.0
0 −0.5 1.5

  

=  0 10 10  

=  𝑦1 𝑦2 𝑦3  



Duality 

We can find the optimal dual solution from the optimal primal tableau 

as follows: 

If the primal is a max problem, 

𝑦𝑖 =

 
 
 

 
 

𝑐 𝑠𝑖
, if constraint 𝑖 is of ≤ type

−𝑐 𝑒𝑖
, if constraint 𝑖 is of ≥ type

𝑐 𝑎𝑖
− 𝑀, if constraint 𝑖 is of = type (max)

𝑐 𝑎𝑖
+ 𝑀, if constraint 𝑖 is of = type (min)

 



Duality 

Example: 

max 𝑧 = 3𝑥1 + 2𝑥2 + 5𝑥3 

𝑥1 + 3𝑥2 + 2𝑥3 ≤ 15

2𝑥2 − 𝑥3 ≥ 5
2𝑥1 + 𝑥2 − 5𝑥3 = 10
𝑥1 , 𝑥2 , 𝑥3 ≥ 0

 



Duality 

 𝑧 𝑥1 𝑥2 𝑥3 𝑠1 𝑒2 𝑎2 𝑎3 RHS 

𝑧 1 0 0 0 
51

23
 

58

23
 𝑀 −

58

23
 𝑀 +

9

23
 

565

23
 

𝑥3 0 0 0 1 
4

23
 

5

23
 −

5

23
 −

2

23
 

15

23
 

𝑥2 0 0 1 0 
2

23
 −

9

23
 

9

23
 −

1

23
 

65

23
 

𝑥1 0 1 0 0 
9

23
 

17

23
 −

17

23
 

7

23
 

120

23
 

 



Duality 

Since 1st constraint is of type ≤, 𝑦1 = 𝑐 𝑠1
=

51

23
 

Since 2nd constraint is of type ≥, 𝑦2 = −𝑐 𝑒2
= −

58

23
 

Since 3rd constraint is of type =, 𝑦3 = 𝑐 𝑎3
− 𝑀 = 𝑀 +

9

23
− 𝑀 =

9

23
 



Duality 

Shadow Prices 

Definition (Shadow Price): 
 
The shadow price of the 𝑖th constraint is the amount by which the 
optimal 𝑧 value is improved if 𝑏𝑖  is increased by 1 assuming that the 
current basis remains optimal. 
 
 



Duality 

Shadow Prices 

We can use the Dual Theorem to find the shadow prices. Consider the 

Dakota Example, and let us find the shadow price of the second 

constraint. We have 

𝐜𝐵𝐁−1 =  𝑦1 𝑦2 𝑦3 =  0 10 10  

From the dual theorem, increasing the right hand side of the second 

constraint by 1, from 20 to 21, the objective improves by 

𝑏2 = 20 ⇒ 𝑧1 = 48𝑦1 + 20𝑦2 + 8𝑦3

𝑏2 = 21 ⇒ 𝑧2 = 48𝑦1 + 21𝑦2 + 8𝑦3
 ⇒ 𝑧2 − 𝑧1 = 𝑦2 = 10 

which shows the shadow price of the 𝑖th constraint in a max problem is 

the value of the 𝑖th dual variable. 



Duality 

Shadow Prices 

Our proof of the Dual Theorem demonstrated the following result: 

Assuming that a set of basic variables 𝐵 is feasible, then 𝐵 is optimal if 

and only if the associated dual solution (𝐜𝐵𝐁−1) is dual feasible. 

This result can be used for an alternative way of doing the following 

types of sensitivity analysis: 

 Changing the objective coefficient of a non-basic variable 

 Changing the column of a non-basic variable 

 Adding a new variable (activity) 



Duality 

Sensitivity Analysis 

Our proof of the Dual Theorem demonstrated the following result: 

Assuming that a set of basic variables 𝐵 is feasible, then 𝐵 is optimal if 

and only if the associated dual solution (𝐜𝐵𝐁−1) is dual feasible. This 

result can be used for an alternative way of doing the following types of 

sensitivity analysis: 

 Changing the objective coefficient of a non-basic variable 

 Changing the column of a non-basic variable 

 Adding a new variable (activity) 



Duality 

Sensitivity Analysis 

Consider the Dakota Example: 

max 𝑧 = 60𝑥1 + 30𝑥2 + 20𝑥3 

8𝑥1 + 6.0𝑥2 + 𝑥3 ≤ 48
4𝑥1 + 2.0𝑥2 + 1.5𝑥3 ≤ 20
2𝑥1 + 1.5𝑥2 + 0.5𝑥3 ≤ 8
𝑥1 , 𝑥2 , 𝑥3 ≥ 0

 

The optimal solution of the primal is 

𝑧 = 280; 𝑥1 = 2, 𝑥2 = 0, 𝑥3 = 8, 𝑠1 = 24, 𝑠2 = 0, 𝑠3 = 0 



Duality 

Sensitivity Analysis 

The dual of the problem is 

min 𝑤 = 48𝑦1 + 20𝑦2 + 8𝑦3 

8𝑦1 + 4.0𝑦2 + 2𝑦3 ≥ 60
6𝑦1 + 2.0𝑦2 + 1.5𝑦3 ≥ 30
𝑦1 + 1.5𝑦2 + 0.5𝑦3 ≥ 20
𝑦1 , 𝑦2 , 𝑦3 ≥ 0

 

The optimal solution of the dual is 

𝑤 = 280; 𝑦1 = 0, 𝑦2 = 10, 𝑦3 = 10 



Duality 

Sensitivity Analysis 

Assume that we want to change the objective coefficient of 𝑥2. Note 

that, we have 

6𝑦1 + 2𝑦2 + 1.5𝑦3 ≥ 𝑐2 

and since we have 𝑦1 = 0, 𝑦2 = 10, 𝑦3 = 10, we can write 

𝑦1 = 0, 𝑦2 = 10, 𝑦3 = 10 ⇒ 6𝑦1 + 2𝑦2 + 1.5𝑦3 = 35 ≥ 𝑐2 

Hence, we see that as long as 𝑐2 ≤ 35, the current solution remains 

optimal. 



Duality 

Sensitivity Analysis 

Look at the other examples where we change the column of non-basic 

variable and add a new variable (activity). 



Complementary Slackness 

The Theorem of Complementary Slackness is an important result that 

relates the optimal primal and dual solutions. To state this theorem, we 

assume that we have the following primal and dual problems: 



Complementary Slackness 

Consider the following max problem (normal max problem): 

max 𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛  

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

⋮ ⋮ ⋱ ⋮ ≤ ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛 𝑥𝑛 ≤ 𝑏𝑚

𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛 ≥ 0

 



Complementary Slackness 

The dual of the problem is given as follows (normal min problem): 

min 𝑤 = 𝑏1𝑦1 + 𝑏2𝑦2 + ⋯ + 𝑏𝑚𝑦𝑚  

𝑎11𝑦1 + 𝑎21𝑦2 + ⋯ + 𝑎𝑚1𝑦𝑚 ≥ 𝑐1

𝑎12𝑦1 + 𝑎22𝑦2 + ⋯ + 𝑎𝑚2𝑦𝑚 ≥ 𝑐2

⋮ ⋮ ⋱ ⋮ ≥ ⋮
𝑎1𝑛𝑦1 + 𝑎2𝑛𝑦2 + ⋯ + 𝑎𝑚𝑛 𝑦𝑚 ≥ 𝑐𝑛

𝑦1 , 𝑦2 , ⋯ , 𝑦𝑚 ≥ 0

 

Moreover, let 𝑠1 , 𝑠2, … , 𝑠𝑚  and 𝑒1 , 𝑒2 , … , 𝑒𝑛  be the slack and excess 

variables for the primal and the dual. 



Complementary Slackness 

We can state the Theorem of Complementary Slackness as follows: 

Theorem: Complementary Slackness 
 
If 𝐱𝑇 =  𝑥1 … 𝑥𝑛  𝑇 and 𝐲 =  𝑦1 … 𝑦𝑚   be feasible primal and 
dual solutions, respectively, then, 𝑥 is primal optimal and 𝑦 is dual 
optimal if and only if 
 

𝑠𝑖𝑦𝑖 = 0, 𝑖 = 1, … , 𝑚 
𝑒𝑗𝑥𝑗 = 0, 𝑗 = 1, … , 𝑛 

 
 



Complementary Slackness 

The Theorem of Complementary Slackness implies that if a constraint in 

either primal or dual is non-binding (𝑠𝑖 > 0 or 𝑒𝑗 > 0), then, the 

corresponding variable value in the corresponding problem (primal or 

dual) equals zero. 



Complementary Slackness 

Consider the Dakota Example and its dual: 

max 𝑧 = 60𝑥1 + 30𝑥2 + 20𝑥3 

8𝑥1 + 6.0𝑥2 + 𝑥3 ≤ 48
4𝑥1 + 2.0𝑥2 + 1.5𝑥3 ≤ 20
2𝑥1 + 1.5𝑥2 + 0.5𝑥3 ≤ 8
𝑥1 , 𝑥2 , 𝑥3 ≥ 0

 



Complementary Slackness 

The dual of the problem is 

min 𝑤 = 48𝑦1 + 20𝑦2 + 8𝑦3 

8𝑦1 + 4.0𝑦2 + 2𝑦3 ≥ 60
6𝑦1 + 2.0𝑦2 + 1.5𝑦3 ≥ 30
𝑦1 + 1.5𝑦2 + 0.5𝑦3 ≥ 20
𝑦1 , 𝑦2 , 𝑦3 ≥ 0

 



Complementary Slackness 

The optimal solution of the dual is 

𝑤 = 280; 𝑦1 = 0, 𝑦2 = 10, 𝑦3 = 10, 𝑒1 = 0, 𝑒2 = 5, 𝑒3 = 0 

The optimal solution of the primal is 

𝑧 = 280; 𝑥1 = 2, 𝑥2 = 0, 𝑥3 = 8, 𝑠1 = 24, 𝑠2 = 0, 𝑠3 = 0 

Now, we note that  

𝑠1𝑦1 = 𝑠2𝑦2 = 𝑠3𝑦3 = 0 

𝑒1𝑥1 = 𝑒2𝑥2 = 𝑒3𝑥3 = 0 



Complementary Slackness 

Can we use the Theorem of Complementary Slackness to solve LPs? 

Think about it! 



The Dual Simplex Method 

Step 1: If the RHS of each constraint is non-negative, then, stop. The 

optimal solution is found. Otherwise go to Step 2. 



The Dual Simplex Method 

Step 2: Choose the most negative basic variable as the leaving variable 

the row of which is the pivot row. To determine the entering variable, 

compute the following ratio for each variable 𝑥𝑗  with a negative 

coefficient in the pivot row and choose the smallest absolute ratio, and 

then, perform the row operations to obtain the new solution. 

 
𝑐 𝑥𝑗

𝑎 𝑥𝑗

 , 𝑗: 𝑎 𝑥𝑗
< 0 



The Dual Simplex Method 

Step 3: If there is any negative RHS corresponding to a constraint in 

which all coefficients are non-negative, then, the LP has no feasible 

solution. Otherwise return to Step 1. 



The Dual Simplex Method 

We can typically use the dual simplex method in the following cases: 

 Finding the new optimal solution after a constraint is added. 

 Finding the new optimal solution after a changing a RHS term. 

 Solving normal min problem. 



The Dual Simplex Method 

When we add a new constraint, we can have the following cases: 

 The current optimal solution satisfies the new constraint 

 The current optimal solution does not satisfy the new 

constraint, but the LP still has a feasible solution. 

 The current optimal solution does not satisfy the new 

constraint. 



The Dual Simplex Method 

The optimal solution for Dakota: 

𝑧 + 5.00𝑥2 + 10.0𝑠2 + 10.0𝑠3 = 280

− 2.00𝑥2 + 𝑠1 + 2.0𝑠2 − 8.0𝑠3 = 24

− 2.00𝑥2 + 𝑥3 + 2.0𝑠2 − 4.0𝑠3 = 8

𝑥1 + 1.25𝑥2 − 0.5𝑠2 + 1.5𝑠3 = 2

 

If we add the constraint 𝑥1 + 𝑥2 + 𝑥3 ≤ 11, we see that the current 

optimal solution 𝑧 = 280; 𝑥1 = 2, 𝑥2 = 0, 𝑥3 = 8 satisfies this 

constraint. 



The Dual Simplex Method 

As an example of the second case, consider that we add the constraint 

𝑥2 ≥ 1. We can proceed as follows by the dual simplex algorithm: 

𝑧 + 5.00𝑥2 + 10.0𝑠2 + 10.0𝑠3 = 280

− 2.00𝑥2 + 𝑠1 + 2.0𝑠2 − 8.0𝑠3 = 24

− 2.00𝑥2 + 𝑥3 + 2.0𝑠2 − 4.0𝑠3 = 8

𝑥1 + 1.25𝑥2 − 0.5𝑠2 + 1.5𝑠3 = 2

𝑥2 + 𝑒4 = −1

 



The Dual Simplex Method 

𝑧 + 10𝑠2 + 10𝑠3 + 5𝑒4 = 275

𝑠1 + 2𝑠2 − 8𝑠3 − 2𝑒4 = 26

𝑥3 + 2𝑠2 − 4𝑠3 − 2𝑒4 = 10

𝑥1 −
1

2
𝑠2 +

3

4
𝑠3 +

5

4
𝑒4 =

3

4
𝑥2 − 𝑒4 = 1

 



The Dual Simplex Method 

As an example of Case 3, assume that we add a new constraint 

𝑥1 + 𝑥2 ≥ 12. We can then write 

𝑧 + 5.00𝑥2 + 10.0𝑠2 + 10.0𝑠3 = 280

− 2.00𝑥2 + 𝑠1 + 2.0𝑠2 − 8.0𝑠3 = 24

− 2.00𝑥2 + 𝑥3 + 2.0𝑠2 − 4.0𝑠3 = 8

𝑥1 + 1.25𝑥2 − 0.5𝑠2 + 1.5𝑠3 = 2

− 𝑥1 − 𝑥2 + 𝑒4 = −12

 



The Dual Simplex Method 

𝑧 + 5.0𝑥2 + 10.0𝑠3 = 280

− 𝑥2 + 𝑠1 − 8.0𝑠3 = 24

− 𝑥2 + 𝑥3 − 4.0𝑠3 = 8

𝑥1 + 𝑥2 + 1.5𝑠3 = 2

− 0.5𝑥2 + 𝑠2 + 1.5𝑠3 + 𝑒4 = −10

 

𝑧 + 10.00𝑥2 + 40𝑠3 + 20𝑒4 = 80

− 2.00𝑥2 + 𝑠1 − 2𝑠3 + 4𝑒4 = −16

− 2.00𝑥2 + 𝑥3 + + 2𝑠3 + 4𝑒4 = −32

𝑥1 + 1.25𝑥2 − 𝑒4 = 12

0.25𝑥2 + 𝑠2 − 3𝑠3 − 2𝑒4 = 20

 



The Dual Simplex Method 

𝑧 10𝑥3 + 60𝑠3 + 60𝑒4 = −240

− 𝑥3 + 𝑠1 − 4𝑠3 = 16

𝑥2 − 𝑥3 + − 2𝑠3 − 4𝑒4 = 32

𝑥1 + 𝑥3 + 2𝑠3 + 3𝑒4 = −20

+ 𝑠2 − 4𝑠3 − 4𝑒4 = 36

 

No feasible solution! 



Data Envelopment Analysis (DEA) 

Often we wonder if a university, hospital, restaurant, or other business 

is operating efficiently. The Data Envelopment Analysis (DEA) method 

can be used to answer this question. To illustrate how DEA works, let’s 

consider three hospitals. To simplify matters, we assume that each 

hospital “converts” two inputs into three different outputs. 



Data Envelopment Analysis (DEA) 

The two inputs used by each hospital are  

 Input 1 = capital (measured by the number of hospital beds) 

 Input 2 = labor (measured in thousands of labor hours) 

The outputs produced by each hospital are 

 Output 1 = hundreds of patient-days for patients under age 14 

 Output 2 = hundreds of patient-days for patients between 14 

and 65 

 Output 3 = hundreds of patient-days for patients over 65 



Data Envelopment Analysis (DEA) 

Hospital Input 1 Input 2 Output 1 Output 2 Output 3 

1 5 14 9 4 16 
2 8 15 5 7 10 
3 7 12 4 9 13 

 

To determine the efficiency of a hospital, we can let 𝑡𝑟  and 𝑤𝑠 be the 

value of one unit of output 𝑟 and the cost of one unit of input 𝑠. The 

efficiency of the hospital 𝑖 is then defined as the value / cost ratio. 



Data Envelopment Analysis (DEA) 

For our example, 

𝑒1 =
9𝑡1 + 4𝑡2 + 16𝑡3

5𝑤1 + 14𝑤2
 

𝑒2 =
5𝑡1 + 7𝑡2 + 10𝑡3

8𝑤1 + 15𝑤2
 

𝑒3 =
4𝑡1 + 9𝑡2 + 13𝑡3

7𝑤1 + 12𝑤2
 



Data Envelopment Analysis (DEA) 

We also use the following assumptions: 

 No hospital can be more than 100% efficient. 

 An efficiency value of 1 means the corresponding hospital is 

efficient 

 We can scale the output values. 

 Each input cost and output value must be strictly positive. 



Data Envelopment Analysis (DEA) 

For Hospital 1, 

max 𝑧1 = 9𝑡1 + 4𝑡2 + 16𝑡3 

− 9𝑡1 − 4𝑡2 − 16𝑡3 + 5𝑤1 + 14𝑤2 ≥ 0
− 5𝑡1 − 7𝑡1 − 10𝑡1 + 8𝑤1 + 15𝑤2 ≥ 0
− 4𝑡1 − 9𝑡1 − 13𝑡1 + 7𝑤1 + 12𝑤2 ≥ 0

5𝑤1 + 14𝑤2 = 1

𝑡1 ≥ 0.001

𝑡2 ≥ 0.001

𝑡3 ≥ 0.001

𝑤1 ≥ 0.001

𝑤2 ≥ 0.001

 



Data Envelopment Analysis (DEA) 

For Hospital 2, 

max 𝑧1 = 5𝑡1 + 7𝑡2 + 10𝑡3 

− 9𝑡1 − 4𝑡2 − 16𝑡3 + 5𝑤1 + 14𝑤2 ≥ 0
− 5𝑡1 − 7𝑡1 − 10𝑡1 + 8𝑤1 + 15𝑤2 ≥ 0
− 4𝑡1 − 9𝑡1 − 13𝑡1 + 7𝑤1 + 12𝑤2 ≥ 0

8𝑤1 + 15𝑤2 = 1

𝑡1 ≥ 0.001

𝑡2 ≥ 0.001

𝑡3 ≥ 0.001

𝑤1 ≥ 0.001

𝑤2 ≥ 0.001

 



Data Envelopment Analysis (DEA) 

For Hospital 3, 

max 𝑧1 = 4𝑡1 + 9𝑡2 + 13𝑡3 

− 9𝑡1 − 4𝑡2 − 16𝑡3 + 5𝑤1 + 14𝑤2 ≥ 0
− 5𝑡1 − 7𝑡1 − 10𝑡1 + 8𝑤1 + 15𝑤2 ≥ 0
− 4𝑡1 − 9𝑡1 − 13𝑡1 + 7𝑤1 + 12𝑤2 ≥ 0

7𝑤1 + 12𝑤2 = 1

𝑡1 ≥ 0.001

𝑡2 ≥ 0.001

𝑡3 ≥ 0.001

𝑤1 ≥ 0.001

𝑤2 ≥ 0.001

 



Data Envelopment Analysis (DEA) 

By solving these 3 LPs, we find that 𝑧1 = 1, 𝑧2 = .773 and 𝑧3 = 1 (verify 

it), meaning that the efficiency of the hospitals are 100%, 77.3% and 

100%, respectively. Interpret the solutions! 



To be continued…  


