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Alternative Optimal Solutions

* For some LPs, we might have more than one optimal point.
In this case, we say that the LP has alternative optimal
solutions.

* |n this section, we will see how we can determine
alternative optimal solutions during the simplex
implementations.
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Alternative Optimal Solutions

Consider the Dakota example as modified as follows:

maxz = 60x1 + 35x2 —+ 20x3

S.t.
8x1 + 6X2 + X3 < 48
4x, + 2x, + 15x3 < 20
2x; + 15x, + 05x3 < 8
) < 5
X1 ’ X2 ) X3 > 0
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Alternative Optimal Solutions

Initial Simplex Tableau

Z X1 X9 X3 S1 Sy S3 Sa RHS
z 1| -60 -35 - 20 0 0 0 0 0
S1 0 8 6 1 1 0 0 0 48
S; 0 4 2 1.5 0 1 0 0 20
S3 0 2 1.5 0.5 0 0 1 0 8
Sy 0 0 1 0 0 0 0 1 5
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Alternative Optimal Solutions

Iteration 1:
Z X1 X9 X3 S1 Sy S3 Sa RHS
VA 1 0 10 -5 0 0 30 0 240
S1 0 0 0 -1 1 0 -4 0 16
S 0 0 -1 0.5 0 1 -2 0 4
X1 0 1 0.75 0.25 0 0 0.5 0 4
Sa 0 0 1 0 0 0 0 1 5
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Alternative Optimal Solutions

Iteration 2: Optimal

VA X1 X9 X3 S1 Sy S3 Sa RHS
Z 1 0 0 0 0 10 10 0 280
S1 0 0 -2 0 1 2 -8 0 24
X3 0 0 -2 1 0 2 -4 0 8
X1 0 1 1.25 0 0O -05 1.5 0 2
S4 0 0 1 0 0 0 0 1 5
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Alternative Optimal Solutions

Iteration 3: Alternative Optimal

VA X1 X7 X3 S1 Sy S3 Sa RHS
Z 1 0 0 0 0 10 10 0 280
S1 0 1.6 0 0 1 1.2 -5.6 0| 27.2
X3 0 1.6 0 1 0 1.2 -1.6 0 11.2
Xy 0 0.8 1 0 0O -04 1.2 0 1.6
Sy 0, —-0.8 0 0 0 04 -1.2 1 3.4
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Alternative Optimal Solutions

So we can write

-l
L

Thus for 0 < A < 1, all points such that
X1 2
X2l =A|0
X3

0
+(1—A)[1.6]
8

11.2

will be optimal.
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Unbounded Solutions

Some LPs might have unbounded solutions. Consider the
following example:

Example: Breadco Bakeries bakes two kinds of bread: French
and sourdough. Each loaf of French bread can be sold for 36¢,
and each loaf of sourdough bread for 30¢. A loaf of French
bread requires 1 yeast packet and 6 oz. of flour; sourdough
requires 1 yeast packet and 5 oz. of flour. At present, Breadco
has 5 yeast packets and 10 oz. of flour. Additional yeast
packets can be purchased at 3¢ each, and additional flour at
4¢/oz. Formulate and solve an LP that can be used to
maximize Breadco’s profits (revenues — costs).
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Unbounded Solutions

x, = # of loaves of French bread baked
X, = # of loaves of sourdough bread baked
x3 = # of yeast packets purchased

x, = # of ounces of flour purchased

max z = 36x; + 30x, — 3x3 — 4x,

s.t.
X1 + X7 — X3 < 5
63(1 + 5.X'2 — X4 < 10
X1 ) ) ) X3 , X4 = 0
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Unbounded Solutions

Initial Simplex Tableau

Z X1 X9 X3 X4 S1 Sy RHS
Z 1 - 36 -30 3 4 0 0 0
S1 0 1 1 -1 0 1 0 5
Sy 0 6 5 0 = il 0 1 10
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Unbounded Solutions

Iteration 1
Z X1 ) X3 X4 S1 S» RHS
Z 1 0 0 3 -1 0 6 60
S1 0 0 1/6 -1 1/6 1 -1/6 10/3
X1 0 1 5/6 0 -1/6 0 1/6 5/3
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Unbounded Solutions

Iteration 2
Z X1 ) X3 X4 S1 S» RHS
Z 1 0 2 -9 0 12 4 100
X4 0 0 1 -6 1 6 -1 20
X 0 1 1 -1 0 1 0 5
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Unbounded Solutions

What can you say about the simplex tableau?
We also note that if we find a vector d satisfying cd > 0, the LP is unbounded.

p=[5 0 0 20 0 0]"isthe optimal solution vector. If we start at that
point and increase x3 by 1 unit, we need to increase x; and x, by 1 and 6 units,

respectively.So,d=[1 0 1 6 0 0]"isthedirection of unboundedness,
and we note that the LP is unbounded since

cd=[36 30 -3 —4 0 O][1 0 1 6 0 0]"=9
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LINDO Computer Package
e

We can use the LINDO computer package to solve relatively small size LPs and IPs.
Example (Dakota Example):

maxz = 60x1 + 3OXZ —+ ZOX3

s.t.
8x; + 6x, + x3 < 48
4x, + 2x, + 15x3 < 20
2x; + 15x, + 05x3 < 8
X7 < 5
X1 , ) , X3 = 0
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LINDO Computer Package

M LINDO - [C:\LINDOB1\ Tempdakota.lt] =R <= . S
: . . LINDO Solver Status ==
@Elle Edit Solve Reports Window Help - || & %
Dles(=(HIS| &l=evxezn] Blel Optinizer Status
Az 60 X1 + 30 E2 + 20 X3 | Status: Optimal
ST . Iterations: 1
8 Xl + 6 2 + H3 <= 48
4 X1 + 2 K2 + 1.5 3 ¢= 20 Infeasibility: 0
2 X1l + 1.5 X2 + 0.5 X3 ¢= &
END Objective: 200
- Best IF: Heodh
1 ' |P Bound: Hoh
Branches: Heoh
i LINDO 2 ’ Elapzed Time: oo:00:00
Update [nterval: |1
[T e
Mo |
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LINDO Computer Package
e

- ﬂ M4 LINDO - [Reports Window] o =[S
S e 5 P23 File Edit Solve Reports Window Help _ &=
Optimizer Statuz D|E7N|EE|E|§| | | |%|E|| |E| | |
Status: Optimal a
[ — 1 LF OPTIHMUM FOUND AT STEFR 1
Infeaszibility; 1] OBJECTIVE FUNCTION VALUE
Best IP: Hek
VARIAELE VALUE REDUCED COST
IP Bound: Hoh H1 2. nooonon 0.o0ooon
. X2 0.ooo0oo0o g.0o0ono
Branches: Hok 3 8. 000000 0000000
Elapzed Time: ao:oo0:00
ROW SLACK OR SURPLUS DITAL PRICES
27 24 000000 0.o0ooon
ch) 0.o0ooon 10. 000000
Update Interval: |1 LNy 0.oooooo 10.000000
HO. ITERATICHS= 1
4 m = b
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LINDO Computer Package
e

¥ LINDO E=R(EcE ===

_Eile Edit Solve Reports Window Help I
Di|=Ela] ilelevRe=8] OO0 kAN 2ES 2

@ Reports Window

THE TABLEAT

ROW  (BASIS) i Xz 3 SLK 2 SLK 3 SLK 4
1 ART 0.o0n 5.000 o.000 0.000 10.000 10.000 280.000
2 SLK 2 0.o0n =2.000 o.000 1.000 2.000 -5.000 24.000
3 il 1.000 1.250 0.000 0.000 -0.500 1.000 2.000
4 X3 0.oon —2.000 1.000 0.0o00 2.000 —-4.000 g.000
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Degeneracy and the Convergence of the
Simplex Algorithm

* Theoretically, the simplex algorithm (as we have described
it) can fail to find the optimal solution to an LP. However, LPs
arising from actual applications seldom exhibit this
unpleasant behavior. For the sake of completeness,
however, we now discuss the type of situation in which the
simplex can fail.
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Degeneracy and the Convergence of the
Simplex Algorithm
e

We can write the following expression for a max problem:

z-value z-value entering variable value\ /entering variable coefficient
( of >=< of )—( of )( of )

new BFS current BFS new BFS current BFS

We can thus write the followings for a max problem:

entering variable value z-value z-value
1) < of ) >0= of > of
new BFS new BFS current BFS
entering variable value z-value z-value
2) ( of ) =0= of = of
new BFS new BFS current BFS
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Degeneracy and the Convergence of the
Simplex Algorithm
e

* An LP that satisfies property 1 is called as a non-degenerate
LP.

* An LP is degenerate if it has at least one BFS in which a basic
variable is equal to zero.
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Degeneracy and the Convergence of the
Simplex Algorithm
~ Example:

max z = 5xq + 2x,

s.t.
X1 + X7 < 6
X1 — X3 < 0
X1 ) X7 > 0
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Degeneracy and the Convergence of the
Simplex Algorithm

Initial Simplex Tableau (Degenerate)

VA X1 X9 S1 So RHS
Z 1 -5 -2 0 0 0
S1 0 1 1 1 0 6
Sy 0 1 -1 0 1 0
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Degeneracy and the Convergence of the
Simplex Algorithm

Iteration 1 (Degenerate)

VA X1 X9 S1 So RHS
Z 1 0 -7 0 0 0
S1 0 0 2 1 6 6
X1 0 1 -1 0 0 0
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Degeneracy and the Convergence of the
Simplex Algorithm

Iteration 2
Z X1 X7 S1 Sy RHS
VA 1 0 0 3.5 1.5 21
X, 0 1 0 05 -05 3
X1 0 0 1 0.5 0.5 3
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Degeneracy and the Convergence of the
Simplex Algorithm
e

* The simplex algorithm might fail to find the optimal solution
to a degenerate LP.

* If an LP has many degenerate BFSs, the simplex algorithm
might be very inefficient.
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Degeneracy and the Convergence of the
Simplex Algorithm
~ Example:

max z = 5xq + 2x,

s.t.
X1 + X7 < 6
X1 — X3 < 0
X1 ) X7 > 0
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Degeneracy and the Convergence of the
Simplex Algorithm

5 Basic Variables BFS Extreme Point Objective
[x1 X2 s1 Sp]T
4 X1, Xy [3,3,0, 0] D 21
X1, 1 [0,0,6, O] C 0
X1,S7 [6,0,0,-6] Infeasible 30
3 Xy, 51 [0,0,6, O] C 0
X2,S87 [0,6,0, 6] B 12
2 S1, 57 [0,0,6, O] C 0
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The Big M Method

* Recall that the simplex algorithm requires a starting BFS. In
all the problems we have solved so far, we found a starting
BFS by using the slack variables as our basic variables.

 If an LP has any greater than or equality constraints,
however, a starting BFS may not be readily apparent.

* In such cases, the Big M method (or the two-phase simplex
method) may be used to solve the problem.

* The Big M method, a version of the simplex algorithm that
first finds a BFS by adding “artificial” variables to the
problem.
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The Big M Method
~ Example:

Example:

Bevco manufactures an orange-flavored soft drink called Oranj by combining orange soda and orange
juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vitamin C. Each ounce of orange
juice contains 0.25 oz of sugar and 3 mg of vitamin C. It costs Bevco 2¢ to produce an ounce of orange
soda and 3¢ to produce an ounce of orange juice. Bevco’s marketing department has decided that each
10-0z bottle of Oranj must contain at least 20 mg of vitamin C and at most 4 oz of sugar. Use linear
programming to determine how Bevco can meet the marketing department’s requirements at minimum

cost.
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The Big M Method
~ Example:

Let

x1 = # of ounces of orange soda in a bottle of Oranj
X, = # of ounces of orange juice in a bottle of Oranj

minz = 2x; + 3x;

s.t.
1 1
X1 + — X < 4
X1 + BXZ > 20
X1 + X7 = 10
Xy, x, = 0
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The Big M Method
~ Example:

Standard form of the LP is

minz = 2x; + 3x;

s.t.
1
X1 + ZXZ + S1 — 4
X1 + BXZ — € = 20
X1 + X7 = 10
X1 , X = 0
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The Big M Method
~ Example:

Using the artificial variables, we can obtain an initial BFS by transforming the LP as follows:

minz = 2x; + 3x, + Ma, + Mas

s.t.
1 1
-x1 + sz + 5 = 4
X1 + 3x2 - € + a, = 20
X1 + X2 + as = 10
X1 , X2 , S1 , (%) ) ap , as = 0
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The Big M Method

Step 1-a) Modify the constraints so that the right-hand side of each constraint is nonnegative.
Step 1-b) Identify each constraint that is now “greater than or equal to” or “equal to” constraint.

Step 2) Convert each inequality to standard form using slack and excess variables.

Step 3) If there exists a constraint with “greater than or equal to” or “equal to” constraint add an
artificial variable a; to the corresponding variable.

Step 4-a) If the LP is a min problem, add +Ma; to the objective function.
Step 4-b) If the LP is a max problem, add —Ma; to the objective function.

Step 5) Because each artificial variable will be in the starting basis, all artificial variables must be
eliminated from row 0 before beginning the simplex. This ensures that we begin with a canonical form.
In choosing the entering variable, remember that M is a very large positive number.
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The Big M Method
~ Example:

minz = 2x; + 3x, + Ma, + Mas

s.t.
1 1
X1 + sz + S = 4
X1 + 3x2 — € + a, = 20
X1 + X2 + as = 10
X1 , X , S1 , (=) , a, , as = 0
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The Big M Method
~ Example:

current RO z — 2xy — 3x; — Ma, — Maz; = 4
MR?2 Mx, + 3Mx; — Me, + Ma, = 20M
MR3 Mx; + Mx, + Maz; = 10M

new RO z + (@2M-2)x; + (4M—3)x; — Me, = 30M
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The Big M Method

Initial Simplex Tableau

Z X1 X9 S1 e, a, as RHS
z 1 2M -2 4M — 3 0 -M 0 0 30M
S1 0 1/2 1/4 1 0 0 0 4
a; 0 1 3 0 -1 1 0 20
as 0 1 1 0 0 0 1 10
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The Big M Method

Computation of Row O:

X1 X S1 € a; as RHS
New R2 1/3 1 0 -1/3 1/3 0 20/3
—4M + 3 4M -3 —4M +3 —80M + 60
(—4M +3) x (NewR2) —2t3  _4m+43 0 o — ——
3 3 3 3
(1) CurrentRO 2M -2 4M -3 O —-M 0O O 30M
—4M + 3 4M -3 —4M+3 —80M + 60
(2) (—4M + 3) x (New R2) —3 —4M+3 0 3 3 0 —s
2M — 3 M-3 —-4M+3 10M + 60
New RO = (1) + (2) 3 0O O 3 3+ 0 —3
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The Big M Method

Iteration 1

Z X1 X9 S1 e, a, as RHS

2M -3 M -3 3 —4M 10M + 60

Z 1 0 0 0| ——

3 3 3 3

S1 0 5/12 0 1 1/12 -1/12 0 7/3

X9 0 1/3 1 0 -1/3 1/3 0 20/3

as 0 2/3 0 0 1/3 -1/3 1 10/3
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The Big M Method

Iteration 2 (Optimal)

Z X1 X9 S1 e, a, as RHS

z 1 0 0 0 _1 1-zM 3-ZM 25
2 2 2

S1 0 0 0 1 -1/8 1/8 —-5/8 1/4

Xy 0 0 1 0 -1/2 1/2 -1/2 5

X1 0 1 0 0 1/2 -1/2 3/2 5
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The Two-Phase Simplex Method
e

When a basic feasible solution is not readily available, the two-phase simplex method may be used as an
alternative to the Big M method. In the two-phase simplex method, we add artificial variables to the
same constraints as we did in the Big M method. Then we find a bfs to the original LP by solving the
Phase | LP. In the Phase | LP, the objective function is to minimize the sum of all artificial variables. At the
completion of Phase |, we reintroduce the original LP’s objective function and determine the optimal
solution to the original LP.
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The Two-Phase Simplex Method
e

Step 1-a) Modify the constraints so that the right-hand side of each constraint is nonnegative.
Step 1-b) Identify each constraint that is now “greater than or equal to” or “equal to” constraint.

Step 2) Convert each inequality to standard form using slack and excess variables.

Step 3) If there exists a constraint with “greater than or equal to” or “equal to” constraint add an
artificial variable a; to the corresponding variable.

Step 4) By ignoring the original objective function, solve the LP with a new objective function that is just
the sum of all artificial variables of the LP (refer to this as Phase | LP).
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The Two-Phase Simplex Method
e

Step 5-a) The optimal objective value of the Phase | LP is greater than 0. In this case, the original LP has
no feasible solution.

Step 5-b) The optimal objective value of the Phase | LP is 0, and no artificial variables are in the optimal
basis. In this case, drop all columns for artificial variables from the optimal Phase | tableau, and solve the
LP by adding the original objective function (refer to this as Phase Il). The optimal solution of Phase Il LP
is the optimal solution of the original LP.

Step 5-c) The optimal objective value of the Phase | LP is 0, and at least one artificial variable is in the
optimal basis. In this case, drop all columns for artificial variables that are non-basic and also the original
variables with negative coefficients from the optimal Phase | tableau, and solve the LP by adding the
original objective function (refer to this as Phase Il). The optimal solution of Phase Il LP is the optimal
solution of the original LP.
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The Two-Phase Simplex Method
e

minz = 2x; + 3x,

1 1

Exl + sz < 4
X1 + SXZ > 20
X1 + Xy, = 10
X1 , X7 = 0
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The Two-Phase Simplex Method
e

minz = 2x; + 3x,

1 1

—-X1 + sz + S1 — 4
X1 + SXZ - € = 20
X1 + X2 = 10
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The Two-Phase Simplex Method
e

minw = a, + as

1 1

Exl + ZXZ + Sq = 4
X1 + 3x2 - € + ay = 20
X1 + X7 + az = 10
X1 X7 S1 € a, as > 0

Fatih Cavdur — fatihcavdur@uludag.edu.tr



The Two-Phase Simplex Method
e

current RO w — - a — a3 = 0
R2 x;y + 3x - e + a = 20

R3 x1 + x + a3 = 10
new R0 z + 2x1 + 4x, - e = 30
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The Two-Phase Simplex Method

w X1 X9 S1 e, a, as RHS
w 1 2 4 0 -1 0 0 30
S1 0 1/2 1/4 1 0 0 0 4
a; 0 1 3 0 -1 1 0 20
as 0 1 1 0 0 0 1 10
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The Two-Phase Simplex Method

w X1 X7 S1 e, a, as RHS
w 1 2/3 0 0 1/3 -4/3 0 10/3
S1 0 5/12 0 1 1/12 -1/12 0 7/3
X 0 1/3 1 0 -1/3 1/3 0 20/3
as 0 2/3 0 0 1/3 -1/3 1 10/3
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The Two-Phase Simplex Method

w X1 X S1 ey a, as RHS
w 1 0 0 0 0 -1 -1 0
51 0 0 0 1 -1/8 1/8 -5/8 1/4
Xy 0 0 1 0 -1/2 1/2 -1/2 5
X1 0 1 0 0 1/2 -1/2 3/2 5
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The Two-Phase Simplex Method
e

There are no-artificial variables in the optimal Phase | tableau. So, drop the artificial variables and solve
the problem with the original objective function, z = 2x; + 3x, = z — 2x; — 3x, = 0. Before we start,
we need to apply the following operations (why?):

currentR0 z — 2x; — 3x, = 0
3R2 3x, — ;ez = 15
2R3 2xq + e; = 10

new RO Z -3 e, = 25
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The Two-Phase Simplex Method

Initial Phase Il Tableau (also Optimal)

zZ X1 X9 S1 e, RHS
Z 1 0 0 0 -1/2 25
S1 0 0 0 1 -1/8 1/4
X 0 0 1 0 -1/2 5
X1 0 1 0 0 1/2 5
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The Two-Phase Simplex Method

minz = 40x; + 10x, + 7x5 + 14x,

X1 — Xy +  2xs = 0

—2x1 + x —  2Xs = 0

X1 + X3 + x5 - x¢ = 3

2x, + x3 + x4 + 2x5 + x¢ = 4

X1 X, , X3 ., Xz Xs , X4 = 0

minw = a; + a; + aj

X, — X + 2x5 + 0
—2x1 + x —  2Xx5 + a 0
X1 + X3 + x5 — Xg + aj 3
2y + x3 + x4 + 2x5 + xq = 4
Xy, X, , X3 , X4 o, Xs ,  Xg > 0
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The Two-Phase Simplex Method

Initial Phase | Tableau

w X1 X2 X3 X4 X5 Xg a a, as RHS
w 1 0 0 1 0 1 -1 0 0 0 3
aq 0 1 -1 0 0 2 0 1 0 0 0
a, 0 -2 1 0 0 -2 0 0 1 0 0
as 0 1 0 1 0 1 -1 0 0 1 3
X4 0 0 2 1 1 2 1 0 0 0 4
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The Two-Phase Simplex Method

Iteration 1 (Optimal Phase |)
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The Two-Phase Simplex Method

Iteration 2 (Optimal Phase Il)

VA X9 X3 X4 X5 Xg a; a, RHS
w 1 4 0 7 0 -14 0 0 7
aq 0 0 0 0 2 0 1 0 0
a, 0 1 0 0 0 0 0 1 0
X3 0 1 1 1/2 3/2 0 0 0 7/2
Xg 0 0 0 1/2 1/2 1 0 0 1/2
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Back to Special Cases (Infeasible Solutions)

Example (Bevco-revised)

minz = 2x; + 3x,

1 1

Exl + sz < 4
X1 + SXZ > 36
X1 + Xy, = 10
X1 , X7 = 0
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Back to Special Cases (Infeasible Solutions)

Example (Bevco-revised)

minz = 2x; + 3x,

—-X1 + sz + S1 — 4
X1 + SXZ - € = 36
X1 + X2 = 10
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Back to Special Cases (Infeasible Solutions)

Example (Bevco-revised) — Big M

minz = 2x; + 3x, + Ma, + Maj

1 1

=Xx1 + sz + 5 = 4
X1 + 3x2 - € + ay = 36
X1 + X7 + az = 10
X1 , X2 , S1 ) € , a, ) as > 0
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Back to Special Cases (Infeasible Solutions)

Example (Bevco-revised) — Big M

Initial Simplex Tableau

VA X1 X5 S1 e, a, as RHS
Z 1 2M -2 4M -3 0 -M 0 0 46 M
S1 0 1/2 1/4 1 0 0 0 4
a, 0 1 3 0 -1 1 0 36
as 0 1 1 0 0 0 1 10
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Back to Special Cases (Infeasible Solutions)

Example (Bevco-revised) — Big M

Iteration 1 (Infeasible)

VA X1 X9 S1 e, a, as RHS
Z 1 —2M + 1 0 0 —-M 0 —4M+3| 6M+ 30
S1 0 1/4 0 1 0 0 -1/4 3/2
a, 0 -2 0 0 -1 1 -3 6
Xy 0 1 1 0 0 0 1 10
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Back to Special Cases (Infeasible Solutions)

Example (Bevco-revised) — Two-Phase

minw = a, + as

1 1

Exl + ZXZ + Sq = 4
X1 + 3x2 - € + ay = 36
X1 + X7 + az = 10
XX , X , S , e , a , a = 0
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Back to Special Cases (Infeasible Solutions)

Example (Bevco-revised) — Two-Phase

Initial Simplex Tableau

w X1 X5 S1 e, a, as RHS
w 1 2 4 0 -1 0 0 46
S1 0 1/2 1/4 1 0 0 0 4
a, 0 1 3 0 -1 1 0 36
as 0 1 1 0 0 0 1 10
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Back to Special Cases (Infeasible Solutions)

Example (Bevco-revised) — Two-Phase

Iteration 1 (Infeasible)

w X1 X9 S1 e, a, as RHS
w 1 -2 0 0 -1 0 -4 6
S1 0 1/4 0 1 0 0 -1/4 3/2
a, 0 -2 0 0 -1 1 -3 6
Xy 0 1 1 0 0 0 1 10
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URS Variables
~ Example

A baker has 30 oz of flour and 5 packages of yeast. Baking a loaf of bread requires 5 oz. of flour and 1
package of yeast. Each loaf of bread can be sold for 30¢. The baker may purchase additional flour at
4¢/oz. or sell leftover flour at the same price. Formulate and solve an LP to help the baker maximize
profits (revenues — costs).

Let
x, = # of loaves of bread baked

X, = # of ounces by which flour supply is increased by cash transactions
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URS Variables
~ Example

max z = 30x; — 4x,

5¢4 — x < 30
X1 < 5
X1 = 0

Xy 1 urs

By letting x, = x§ — x5, and transforming the LP to standard form,

max z = 30x; — 4x5 + 4x;

5xy — x5 + x; + s = 30
X1 + + Sy, = 5
X, , x5, x3 , S , S = 0
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URS Variables

Initial Tableau

z X1 x5 x5 S1 S, RHS
Z 1 -30 4 -4 0 0 0
) 0 5 ~1 1 1 0 30
Sy 0 1 0 0 0 1 5
lteration 1

z X xy x5 51 S, RHS
Z 1 0 4 -4 0 30 150
s1 0 0 ~1 1 1 -5 5
X 0 1 0 0 0 1 5

Iteration 2 (Optimal)
z X1 x5 x5 1 S, RHS
VA 1 0 0 0 4 10 170
x5 0 0 ~1 1 1 -5 5
X 0 1 0 0 0 1 5
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URS Variables

Mondo Motorcycles is determining its production schedule for the next four quarters. Demand for
motorcycles will be as follows: quarter 1—40; quarter 2—70; quarter 3—50; quarter 4—20. Mondo
incurs four types of costs as follows:

e It costs Mondo $400 to manufacture each motorcycle.

e At the end of each quarter, a holding cost of $100 per motorcycle is incurred.

e Increasing production from one quarter to the next incurs costs for training employees. It is
estimated that a cost of $700 per motorcycle is incurred if production is increased from one
quarter to the next.

e Decreasing production from one quarter to the next incurs costs for severance pay, decreasing
morale, and so forth. It is estimated that a cost of $600 per motorcycle is incurred if production
is decreased from one quarter to the next.

All demands must be met on time, and a quarter’s production may be used to meet demand for the
current quarter. During the quarter immediately preceding quarter 1, 50 Mondos were produced.
Assume that at the beginning of quarter 1, no Mondos are in inventory. Formulate an LP that minimizes
Mondo’s total cost during the next four quarters.
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URS Variables

p; = # of motorcycles produced during quarter t, t = 1,2,3,4

I[; = inventory at the end of quartert,t = 1,2,3,4

x; = amount by which quarter t production exceeds quarter t production, t = 1,2,3,4
Since x; is unrestricted, we use the following transformation:

x, =xf —x;,t=123,4
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URS Variables
~ Example

minz = 400p; + - + 400p, + 100i; + -+ + 100i, + 700x] + - + 700x; + 600x] + - + 600x;

ii1=0+p;, —40
Ip =101 +p,—70
i3 =1i, +p3—>50
iy =i3+py— 20
x{ —x7 =p; =50
X3 —Xx3 =p;—p1
X3 —x3 =p3—p;
X{ — Xy =ps—Dp3
i, > 0,Vt
pr = 0,Vt
x >0,vt

Fatih Cavdur — fatihcavdur@uludag.edu.tr



Karmarkar’s Algorithm

Karmarkar’s method requires that the LP be in the following form:

minz = ¢cx
Kx=0
n
xl':].
i=1
x>0
1 1 1
x0=[__ _]es
n n n
z*=0
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Karmarkar’s Algorithm

e Karmarkar’s method uses transformed variables yy, v, ..., y,, to transform the current point to
the center of feasible space.

e Karmarkar’s method has been shown to be a polynomial time algorithm. This implies that if an
LP of size n is solved by Karmarkar’s method, then there exist positive numbers a and b such
that for any n, an LP of size n can be solved in a time of at most an®.

e In contrast to Karmarkar’s method, the simplex algorithm is an exponential time algorithm for
solving LPs. If an LP of size n is solved by the simplex, then there exists a positive number ¢ such
that for any n, the simplex algorithm will find the optimal solution in a time of at most c2".

e For large enough n, since c2™ > an?, in theory a polynomial time algorithm is superior to an
exponential time algoritm.

e Preliminary testing of Karmarkar’s method (by Karmarkar) has shown that for large LPs arising in
actual application, this method may be up to 50 times as fast as the simplex algorithm.
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End of Lecture



