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Output analysis is the examination of data generated by a
simulation.

Its purpose is either to predict the performance of a system or
to compare the performance of two or more alternative system
designs.

The need for statistical output analysis is based on the
observation that the output data from a simulation exhibits
random variability when RN generators are used to produce
the values of the input variables.
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Some output variables could be autocorrelated, implying the
lack of statistical independence, means that classical methods
of statistics, which assume independence, are not directly
applicable to the analysis of these output data, and hence,
must be properly modified.

In addition to the autocorrelation present in most simulation
output data, the specification of the initial conditions of the
system at time 0 can pose a problem for the simulation
analyst and could influence the output data. For purposes of
statistical analysis, the effect of the initial conditions is that
the output observations might not be identically distributed
and that the initial observations might not be representative
of the steady-state behavior of the system.
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Types of Simulations with respect to Output Analysis
Terminating Simulations

In the analysis of simulation output data, a distinction is made
between terminating or transient simulations and steady-state
simulations. A terminating simulation is one that runs for some
duration of time TE where E is a specified event (or set of events)
that stops the simulation. Such a simulated system “opens” at
time 0 under well-specified initial conditions and “closes” at the
stopping time TE .



Systems Simulation Output Data Analysis

Introduction

Types of Simulations with respect to Output Analysis
Non-Terminating Simulations

A non-terminating system is system that runs continuously, or at
least over a very long period of time. Examples include assembly
lines that shut down infrequently, continuous production systems
of many different types, telephone systems, the Internet etc. A
simulation of a non-terminating system starts at simulation time 0
under initial conditions defined by the analyst and runs for some
analyst-specified period of time TE . Usually, the analyst wants to
study the steady-state or long-run properties of the system -that is,
properties that are not influenced by the initial conditions of the
model at time 0. A steady-state simulation is a simulation whose
objective is to study long-run or steady-state behavior of a
non-terminating system.
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Stochastic Output

Consider one run of a simulation model over a period of time
[0,TE ]. Since the model is an input-output transformation, and
since some of the model input parameters are RVs, it follows that
the model output variables are RVs. Example 11.7 and 11.8 are
given in the text (DESS) to illustrate the nature of the output data
from stochastic simulations and to give a preliminary discussion of
several important properties of these data.
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Performance Measure Estimations

Consider the estimation of a performance parameter, θ or φ of a
simulated system. It is desired to have a point estimate and an
interval estimate of θ or φ. The length of the interval estimate is a
measure of the error in the point estimate. The simulation output
data are of the form {Y1, . . . ,Yn} for estimating θ; we refer to
such output data as discrete-time-data, and the simulation output
data are of the form {Y (t), 0 ≤ t ≤ TE} for estimating φ; we refer
to such output data as continuous-time data. The parameter θ is
an ordinary mean and φ is a time-weighted mean. We use two
different symbols here simply to provide a distinction between
ordinary means and time-weighted means.
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The point estimator of θ based on the data {Y1, . . . ,Yn} is defined
by

θ̂ =
1

n

n∑

i=1

Yi

where θ̂ is a sample mean based on a sample of size n. Simulation
languages may refer to this as a “discrete-time”, “collect” or
“observational” statistic. The point estimator θ̂ is said to be
unbiased for θ if its expected value is θ -that is, if E (θ̂) = θ. In
general, however, E (θ̂) 6= θ, and E (θ̂)− θ is called the bias in the
point estimator θ̂. It is desirable to have estimators unbiased, or if
not possible, have a small bias relative to the magnitude of θ.
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The point estimator of φ based on the data {Y (t), 0 ≤ t ≤ TE} is
defined by

φ̂ =
1

TE

∫ TE

0
Y (t)dt

and is called a time average of Y (t) over [0,TE ]. Simulation
languages may refer to this as a “continuous-time”,
“discrete-change” or “time-persistent” statistic. In general
E (φ̂) 6= φ. Again, we want to have unbiased or low-biased
estimators.
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CI Estimation

To understand confidence intervals (CI) fully, it is important to
understand the difference between a measure of error and a
measure of risk. One way to make the difference clear is to
contrast a CI with a prediction interval (PI) (which is another
useful output-analysis tool).
Both CIs and PIs are based on the premise that the data being
produced by the simulation is represented well by a probability
model. Suppose that model is the normal distribution with mean θ
and variance σ2, both unknown. To make the example concrete,
let Ȳi be the average cycle time for parts produced on the ith
replication of the simulation. Therefore, θ is the mathematical
expectation of Ȳi , and σ represents the day-to-day variation of the
average cycle time.
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CI Estimation

Suppose we want to estimate θ. The natural estimator for θ is the
overall sample mean of R independent replications is given by
Ȳ .. =

∑R
i=1 Ȳi ./R . Since Ȳ .. is an estimate of θ, based on a

sample, it has an error. A CI is a measure of that error. Let

S2 =
1

R − 1

R∑

i=1

(Yi .− Ȳ ..)2

be the sample variance across the R replications.
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CI Estimation

The usual CI, which assumes the Yi . are normally distributed, is

Ȳ ..± tα/2,R−1
S√
R

where tα/2 is the quantile of the t distribution with R − 1 d.o.f.
that cuts off α/2 of the area of each tail.
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PI Estimation

Now suppose that we need to make a promise about what the
average cycle time will be on a particular day. A good guess is our
estimator Ȳ .., but it is unlikely to be exactly right. Even θ itself,
which is the center of the distribution, is not likely to be the actual
average cycle time on any particular day, because the daily average
cycle time varies. A PI, on the other hand, is designed to be wide
enough to contain the actual average cycle time on any particular
day with high probability. A PI is a measure of risk; a CI is a
measure of error.
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PI Estimation

The normal-theory prediction interval is

Ȳ ..± tα/2,R−1S

√
1 +

1

R

The limit of this interval will go to 0 as R increases. In fact, in the
limit it becomes θ ± zα/2σ to reflect the fact that, no matter how
much we simulate, our daily average cycle time still varies.
In summary, a PI is a measure of risk and a CI is a measure of
error. We can simulate away error by making more replications,
but we cannot simulate away risk. We can, however, do a better
job of evaluating risk by making more replications. Look at
Example 11.9 in the text.
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Example

Suppose that overall average cycle time on 120 replications of a
manufacturing simulation is 5.80 hours with a sample standard
deviation of 1.60 hours. Since t0.025,119 = 1.98, a 95% CI is

Ȳ ..± tα/2,R−1
S√
R

⇒ 5.80± 1.98
1.60√
120

= 5.80± 0.29 hours

On any particular day, we are 95% confident that the average cycle
time for all parts produced on that day will be the PI

Ȳ ..± tα/2,R−1S

√
1 +

1

R
⇒ 5.80±

√
1 +

1

120
= 5.80± 3.18 hours
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Output Analysis for Terminating Simulation

Consider a terminating simulation that runs over a simulated time
interval [0,TE ] and results in observations Y1, . . . ,Yn. The sample
size, n, may be a fixed number, or it may be a RV. A common goal
in simulation is to estimate

θ = E

(
1

n

n∑

i=1

Yi

)

or, if the data are of the form {Y (t), 0 ≤ t ≤ TE},

φ = E

(
1

TE

∫ TE

0
Y (t)dt

)
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Output Analysis for Terminating Simulation

The method used in each case is the method of independent
replications. The simulation is repeated a total of R times, each
run using a different RN stream and independently chosen initial
conditions. We address this problem.
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Statistical Background

Perhaps the most confusing aspect of simulation output analysis is
distinguishing within-replication data from across-replication data,
and understanding the properties and uses of each.
To illustrate the key ideas, think in terms of the simulation of a
manufacturing system and two performance measures of that
system, the cycle time for parts and the work in process (WIP). In
computer applications, these correspond to the response time and
the length of the task queue at the CPU etc.
Here is the usual set up for something like cycle time: Let Yij be
the cycle time for the jth part produced in the ith replication. If
each replication represents two shifts of production, then the
number of parts produced in each replication might differ. Table 1
shows, symbolically, the results of R replications.



Systems Simulation Output Data Analysis

Output Analysis for Terminating Simulations

Statistical Background

Within-Replication Across-Replication

Y11 Y12 . . .Y1n1 Ȳ1., S
2
1 ,H1

Y11 Y12 . . .Y1n2 Ȳ2., S
2
2 ,H2

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
YR1 YR2 . . .YRnR ȲR ., S

2
R ,HR

Ȳ .., S2,H

Table : Within and Across-Replication Cycle Time Data
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Statistical Background

The across-replication data are formed by summarizing
within-replication data: Ȳi . is the sample mean of the ni cycle
times from the ith replication, s2i is the sample variance of the
same data, and

Hi = tα/2,ni−1
Si√
ni

is a CI half-width based on this dataset. The average of the daily
cycle time averages

Ȳ .. =
1

R

R∑

i=1

Ȳi
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Statistical Background

The sample variance of the daily cycle time averages,

S2 =
1

R − 1

R∑

i=1

(Ȳi .− Ȳ ..)2

and finally, the CI half-width

H = tα/2,R−1
S√
R

The quantity S/
√
R is the standard error, which is sometimes

interpreted as the average error in Ȳ .. as an estimator of θ.
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Statistical Background

Within a replication, work in process (WIP) is a continuous-time
output, denoted Yi (t). The stopping time for the ith replication,
TEi

, could be a RV, in general; in this example, it is the end of the
second shift.

Within-Replication Across-Replication

Y1(t), 0 ≤ t ≤ TE1
Ȳ1., S

2
1 ,H1

Y2(t), 0 ≤ t ≤ TE2
Ȳ2., S

2
2 ,H2

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
YR(t), 0 ≤ t ≤ TER

ȲR ., S
2
R ,HR

Ȳ .., S2,H

Table : Within and Across-Replication WIP Data
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Statistical Background

The within-replication sample mean and variance are defined
appropriately for continuous-time data:

Ȳi . =
1

TEi

∫ TEi

0
Yi (t)dt

and

S2
i =

1

TEi

∫ TEi

0
(Yi (t)− Ȳi .)

2dt

A definition for Hi is more problematic, but take it to be

Hi = zα/2
Si√
TEi
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Example

Consider Example 11.7 in the text (DESS) with R = 4 replications
given in Table 11.1 in the text (DESS). The four utilization
estimates, ρ̂r , are time averages of the continuous variable Y . The
simulation output data of the form

Yr (t) =

{
1, if Able is busy at time t

0, otherwise

and ρ̂r = Ȳr . as computed by the above time average formula with
TE = 2 hours.
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If we want a 95% CI for Able’s true utilization ρ,

Ȳ .. = ρ̂ =
0.808 + 0.875 + 0.708 + 0.842

4
= 0.808

and

S =

√
(0.808− 0.808)2 + . . . (0.842− 0.808)2

4− 1
= 0.072
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Thus, the standard error of ρ̂ = 0.808 is estimated by
s.e.(ρ̂) = S/

√
4 = 0.036, and the 95% CI is

H = t0.025,3
S√
4
= (3.18)(0.036) = 0.114

and we have 0.808± 0.114 or 0.694 ≤ ρ ≤ 0.922 as shown below.

0.808− 0.114 ≤ ρ ≤ 0.808 + 0.114 ⇒ 0.694 ≤ ρ ≤ 0.922
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Similarly, a 95% CI for mean time in system is obtained as follows:

ŵ =
3.74 + . . . 3.98

4
= 4.02

S =

√
(3.74− 4.02)2 + . . . (3.98− 4.02)2

4− 1
= 0.352

and

H = t0.025,3
S√
4
= (3.18)(0.176) = 0.560

and we have 0.808± 0.114 or 0.694 ≤ ρ ≤ 0.922.
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A 95% CI for mean time in system is obtained as follows:

4.02− 0.56 ≤ w ≤ 4.02 + 0.56 ⇒ 3.46 ≤ w ≤ 4.58
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Confidence Intervals with Specified Precision

As mentioned above, the half-length H of a 100(1− α)% CI for a
mean θ, based on the t distribution, is given by

H = tα/2,R−1
S√
R

where S2 is the sample variance and R is the number of
replications. Suppose that an error criterion ǫ is specified; in other
words, it is desired to estimate θ by Ȳ .. to within ±ǫ with high
probability-say, at least 1− α. Thus, it is desired that a sufficiently
large sample size, R , be taken to satisfy

P(|Ȳ ..− θ| < ǫ) ≥ 1− α
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Confidence Intervals with Specified Precision

Assume that we initially have R0 independent replications. We
must have R0 ≥ 2, with 10 or more being desirable. The R0

replications will be used to obtain an initial estimate S2
0 of the

population variance σ2. To meet the half-length criterion, a sample
size R must be chosen such that R ≥ R0 and

H = tα/2,R−1
S0√
R

≤ ǫ

Solving for R in above inequality shows that R is the smallest
integer satisfying R ≥ R0 and

R ≥
(
tα/2,R−1S0

ǫ

)2
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Confidence Intervals with Specified Precision

Since tα/2,R−1 ≥ zα/2, an estimate for R is given by

R ≥
(
zα/2S0

ǫ

)2

(1)

where zα/2 is the 100(1− α/2) percentage point of the standard
normal distribution. Since tα/2,R−1 ≈ zα/2 for large R (say,
R ≥ 50), the second inequality for R is adequate when R is large.
A 100(1− α)% CI for θ by

Ȳ ..− tα/2,R−1
S√
R

≤ θ ≤ Ȳ ..+ tα/2,R−1
S√
R

(2)

where Ȳ .. and S2 are computed on the basis off all R replications.
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Example

Suppose that we want to estimate Able’s utilization in Example
11.7 in the text (DESS) to within ±0.04 with probability 0.95. An
initial sample of R0 = 4 is taken, with the results given in Table
11.1 in the text. An initial estimate of the population variance is
S2
0 = 0.00518. The error criterion is ǫ = 0.04, and the confidence

coefficient is 1− α = 0.95. Thus, the final sample size muse be at
least as large as

R ≥
(
zα/2S0

ǫ

)2

=
(1.96)2(0.00518)

(0.04)2
= 12.44 (3)
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To test the possible candidates (R = 13, 14, . . .),

R = 13 ⇒ R ≥
(
tα/2,R−1S0

ǫ

)2

= 15.39

R = 14 ⇒ R ≥
(
tα/2,R−1S0

ǫ

)2

= 15.10

R = 15 ⇒ R ≥
(
tα/2,R−1S0

ǫ

)2

= 14, 83

Thus, R = 15 is the smallest integer satisfying the above inequality,
so R − R0 = 15− 4 = 11 additional replications are needed.
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Suppose that we want to estimate the 0.8 quantile of the time to
failure (in hours) for the communications system in Example 11.3
and form a 95% CI for it. We have R = 500 replications. The
point estimator θ̂ = 4, 644 hours since the 80% of the data in the
histogram is to the left of 4,644 hours. That means, it is the
500× 0.8 = 400th smallest value of the sorted data.
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To obtain CI, we compute

pl = p − zα/2

√
p(1− p)

R − 1
= 0.8− 1.96

√
0.8(0.2)

499
= 0.765

pu = p + zα/2

√
p(1− p)

R − 1
= 0.8 + 1.96

√
0.8(0.2)

499
= 0.835

Thus, θ̂l = 4, 173 (it is the 500(0.765) = 382nd smallest value,
rounding down), and θ̂u = 5, 199 (it is the 500(0.835) = 418th
smallest value, rounding up)
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Estimating Probabilities and Quantiles from Summary Data

Knowing the equation for the CI half-width is important if all the
simulation software provides is Ȳ .. and H and you need to work out
the number of replications required to get a pre-specified precision,
or if you need to estimate a probability or quantile. Sample
standard deviation can be extracted from H by using the formula

S =
H
√
R

tα/2,R−1
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Estimating Probabilities and Quantiles from Summary Data

The more difficult problem is estimating a probability or quantile
from summary data. When we only have the sample mean and CI
half-width (which gives us the sample standard deviation), we can
use a normal-theory approximation for the probabilities or
quantities we desire,

P{Ȳi . ≤ c} ≈ P

{
Z ≤ c − Ȳ ..

S

}

and

θ̂ ≈ Ȳ ..+ zpS (4)
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From 25 replications of the manufacturing simulation, a 90% CI
for the daily average WIP is 218± 32. What is the probability that
the daily average WIP is less than 350? What is the 85th
percentile of daily average WIP?

S =
H
√
R

tα/2,R−1
=

32
√
25

1.71
= 93
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Using the normal approximation and the normal table, we get

P{Ȳi . ≤ c} ≈ P

{
Z ≤ c − Ȳ ..

S

}
= P

{
Z ≤ 350− 218

93

}

= P{Z ≤ 1.42}
= 0.92

and

θ̂ ≈ Ȳ ..+ z0.85S = 218 + 1.04(93) = 315 parts
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Consider a single run of a simulation model whose purpose is to
estimate a steady-state or long-run characteristic of the system.
Suppose that the single run produces observations Y1,Y2, . . .,
which, generally, are samples of an autocorrelated time series. The
steady-state measure of performance, θ, is defined by

θ = lim
n→∞

1

n

n∑

i=1

Yi

with probability 1, where the value of θ is independent of the initial
conditions. Similarly, we have for the continuous case,

φ = lim
TE→∞

1

TE

∫ TE

0
Y (t)dt

with probability 1.
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Initialization Bias in Steady-State Simulations

There are several methods of reducing the point-estimator bias
caused by using artificial and unrealistic initial conditions in a
steady-state simulation. The first method is to initialize the
simulation in a state that is more representative of long-run
conditions (sometimes called intelligent initialization). A second
method is to divide each simulation run into two phases: first, an
initialization phase fallowed by a data-collection phase. Look at
the examples.
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Error Estimation for Steady-State Simulation

If {Y1, . . . ,Yn} are not statistically independent, then S2/n given
as above is a biased estimator of the true variance, V (θ̂). This is
almost always the case when {Y1, . . . ,Yn} is a sequence of output
observations from within is a sequence of output observations from
within a single replication. If a point estimator for θ is the sample
mean Ȳ =

∑n
i=1 Yi/n, a general result from mathematical

statistics is that the variance of Ȳ is

V (Ȳ ) =
1

n2

n∑

i=1

n∑

j=1

cov(Yi ,Yj)

where cov(Yi ,Yi ) = V (Yi ).
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Error Estimation for Steady-State Simulation

To construct a CI for θ, an estimate of V (Ȳ ) is required. But
obtaining an estimate of the above is pretty much hopeless since
each covariance term could be different. Fortunately, systems that
have a steady-state will, if simulated long enough to pass the
transient phase, produce an output process that is approximately
covariance stationary. Intuitively, stationary implies that Yi+k

depends on Yi+1 in the same manner as Yk depends on Y1. In
particular, the covariance between two RVs in the time series
depends only on the number of observations between them, called
the lag.
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Error Estimation for Steady-State Simulation

For a covariance-stationary time series, {Y1,Y2, . . .}, define the
lag-k by

γk = cov(Y1,Y1+k) = cov(Yi ,Yi+k)

which, by definition of covariance stationarity, is not a function of
i . For k = 0, γ0 becomes the population variance σ2, that is

γ0 = cov(Yi ,Yi+0) = V (Yi ) = σ2

The lag-k autocorrelation is the correlation between any two
observations k apart. It is defined by

ρk =
γk
σ2

and −1 ≤ ρk ≤ 1, k = 1, 2, . . .
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Error Estimation for Steady-State Simulation

If a time series is covariance stationary, then we can simplify the
above variance equation as

V (Ȳ ) =
σ2

n

[
1 + 2

n−1∑

k=1

(
1− k

n

)
ρk

]

where ρk is the lag-k autocorrelation as given above.
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Error Estimation for Steady-State Simulation

Why does autocorrelation make it difficult to estimate V (Ȳ )?
Recall that the standard estimate for the variance of a sample
mean is S2/n. By using the above variance expression, we can
show that the expected value of the variance estimator S2/n is

E

(
S2

n

)
= BV (Ȳ )

where

B =
n/c − 1

n − 1
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Error Estimation for Steady-State Simulation

The effect of the autocorrelation on the estimator S2/n is derived
by an examination of the above three equations. There are three
possibilities:
Case 1: If the Yi are independent, then, ρk = 0 for k = 1, 2, 3, . . ..
Therefore, c = 1 + 2

∑
k=1 n − 1(1− k/n)ρk = 1 and equation 11

reduces to familiar σ2/n. Also note that B = 1, so S2/n is an
unbiased estimator of V (Ȳ ). The Yi will always be independent
when they are obtained from different replications.
Case 2: If the autocorrelations ρk are primarily positive, then
c = 1+2

∑
k=1 n − 1(1− k/n)ρk > 1, so that n/c < n, and hence

B < 1. Therefore, S2/n is biased low as an estimator of V (Ȳ ).
Case 3: If the autocorrelations ρk are substantially negative, then
0 ≤ c < 1, it follows that B > 1 and S2/n is biased high for V (Ȳ ).
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Replication Method for Steady-State Simulations

If initialization bias in the point estimator has been reduced to a
negligible level (through some combination of intelligent
initialization and deletion), then the method of independent
replications can be used to estimate point-estimator variability and
to construct a CI. The basic idea is simple: Make R replications,
initializing and deleting from each one the same way.
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Replication Method for Steady-State Simulations

If the analyst decides to delete d observations of the total of n
observations in a replication, then the point estimator of θ is
Ȳ ..(n, d), defined as before, that is, the point estimator is the
average of the remaining data. The basic raw output data are
{Yrj , r = 1, . . . ,R ; j = 1, . . . , n}. Each Yrj is derived in one of the
following ways:
Case 1: Yrj is an individual observation from within replication r

Case 2: Yrj is a batch mean from within replication r of some
number of discrete-time observations.
Case 3: Yrj is a batch mean of a continuous-time process over
time interval j .
When using the replication method, each replication is regarded as
a single sample for estimating θ.
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Replication Method for Steady-State Simulations

For replication r , we define

Ȳr .(n, d) =
1

n − d

n∑

j=d+1

Yrj

as the sample mean of all (non-deleted) observations in replication
r . Since all replications use different RN streams and all are
initialized at time 0 by the same set of initial conditions (I0), the
replication averages Ȳ1.(n, d), . . . , ȲR .(n, d) are IID RVs, that is,
they constitute a random sample from some underlying population
having unknown mean

θn,d = E [ȲR .(n, d)]
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The overall point estimator given above can also given by

Ȳ ..(n, d) =
1

R

R∑

r=1

ȲR .(n, d)

Thus, it follows that

E [Ȳ ..(n, d)] = θn,d

If d and n are sufficiently large, then θn,d ≈ θ, and Ȳ ..(n, d) is an
approximately unbiased estimator of θ. The bias in Ȳ ..(n, d) is
θn,d − θ.
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For convenience, when the value of n and d are understood,
abbreviate Ȳr .(n, d) and Ȳ ..(n, d) by Ȳr . and Ȳ .., respectively. To
estimate the standard error of Ȳ .., first compute the sample
variance

S2 =
1

R − 1

R∑

r=1

(Ȳr .− Ȳ ..)2 =
1

R − 1

(
R∑

r=1

Ȳ 2
r . − RȲ 2

..

)

The standard error of Ȳ .. is given by

se(Ȳ ..) =
S√
R
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A 100(1− α)% CI (which is only valid if the bias of Ȳ .. is
approximately zero) is given by

Ȳ ..− tα/2,R−1
S√
R

≤ θ ≤ Ȳ ..+ tα/2,R−1
S√
R
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Example

Consider the M/G/1 queuing system of Example 11.8 and 11.14 in
the text (DESS). Suppose that the simulation analyst decides to
make R = 10 replications, each of length TE = 15, 000 minutes,
each starting at time 0 in the empty and idle state, and each
initialized for T0 = 2, 000 minutes before data collection begins.
The raw data output consists of the batch means; recall that each
batch means is simply the average number of customers in queue
for a 1,000-minute interval. The first two batch means are deleted
(d = 2). The purpose of the simulation is to estimate the long-run
time-average queue length by a 95% CI.
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Example

The replication averages Ȳr .(15, 2), r = 1, 2, . . . , 10, are shown in
Table 11.8 in the text (DESS). The point estimator is computed as

Ȳ ..(15, 2) = 8.43

Its standard error is given by

se(Ȳ ..) =
S√
R

= se(Ȳ ..(15, 2)) = 1.59

and thus,

8.43− 2.26(1.59) ≤ LQ ≤ 8.43 + 2.26(1.59) ⇒ 4.84 ≤ LQ ≤ 12.02
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Suppose that, in Example 11.15, the analyst had decided to delete
one batch (d = 1) or no batches (d = 0). Using the quantities in
Table 11.8 in the text again, the 95% CIs are

4.66 = 8.21− 2.26(1.57) ≤ LQ ≤ 8.21 + 2.26(1.57) = 11.76

4.62 = 7.94− 2.26(1.47) ≤ LQ ≤ 7.94 + 2.26(1.47) = 11.26

for d = 1 and d = 0, respectively. Note that, for a fixed total
sample size, n, two things happen as fewer data are deleted:

The CI shifts downward, reflecting the greater downward bias
in Ȳ ..(15, d) as d decreases.

The standard error of Ȳ ..(n, d), namely S/
√
R , decreases as

d decreases.
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Sample Size in Steady-State Simulations

Suppose it is desired to estimate a long-run performance measure,
θ, within ±ǫ, with confidence 100(1− α)%. In a steady-state
simulation, a specified precision may be achieved either by
increasing the number of replications (R) or by increasing the run
length (TE ). Let’s look at the following examples.
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Batch Means

One disadvantage of the replication method is that data must be
deleted on each replication and, in one sense, deleted data are
wasted. This approach suggests that there might be merit in using
an experimental design that is based on a single, long replication.
The disadvantage of a single-replication design arises when we try
to compute the standard error of the sample mean. Since we only
have data from within one replication, the data are dependent and
the usual estimate is biased.
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Batch Means

For a continuous-time process, then we form k batches of size
m = TE/k and compute the batch means as

Ȳj =
1

m

∫ jm

(j−1)m
Y (t + T0)dt

for j = 1, 2, . . . , k . For a discrete -time process,

Ȳj =
1

m

jm∑

i=(j−1)m+1

Yi+d

for j = 1, 2, . . . , k (if k does not divide n − d evenly, round down
to the nearest integer).
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For either case, the variance of the sample mean is estimated by

S2

k
=

1

k

k∑

j=1

(Ȳj − Ȳ )2

k − 1
=

∑k
j=1 Ȳ

2
j − kȲ 2

k(k − 1)

where Ȳ is the overall sample mean of the data after deletion.
Unfortunately, there is no widely accepted and relatively simple
method for choosing an acceptable batch size m, but there are
some guidelines.

Systems Simulation Output Data Analysis

Output Analysis for Steady-State Simulations

Sample Size in Steady-State Simulations

Based on these, we can recommend the following:

Obtain output data from a single replication and delete as
appropriate. Recall the guideline of collecting at least 10
times as much data as is deleted.

Form up to k = 400 batches (but at least 100) with the
retained data, and compute the batch means. Estimate the
sample lag-1 autocorrelation of the batch means as

ρ̂1 =

∑k−1
j=1 (Ȳj − Ȳ )(Ȳj+1 − Ȳ )
∑k

j=1 (Ȳj − Ȳ )2
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Check the correlation to see whether it is sufficiently small.

If ρ̂1 ≤ 0.2, then re-batch the data into 30 ≤ k ≤ 40 batches,
and form a CI using k − 1 degrees of freedom for the t

distribution and using the variance of the sample mean
equation as given above to estimate the variance of Ȳ .
If ρ̂1 > 0.2, then extend the replication by 50% to 100% and
go to Step 2. If it is not possible to extend the replication,
then re-batch the data into approximately k = 10 batches, and
form the CI, using k − 1 degrees of freedom for the t

distribution and using the variance of the sample mean
equation as given above to estimate the variance of Ȳ .
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As an additional check on the CI, examine the batch means for
independence, using the following test. Compute the test statistic

C =

√
k2 − 1

k − 2

[
ρ̂1 +

(Ȳ1 − Ȳ )2(Ȳk − Ȳ )2

2
∑k

j=1 (Ȳj − Ȳ )2

]

If C < zβ, then accept the independence of the batch means,
where β is the Type I error level of the test. Otherwise, extend the
replication by 50% to 100% and go to Step 2. If it is not possible
to extend the replication, then re-batch the data into approximately
k = 10 batches, and form the CI, using k − 1 degrees of freedom
for the t distribution and using the variance of the sample mean
equation as given above to estimate the variance of Ȳ .
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Their average is

θ̂. =
1

R

R∑

i=1

θ̂i

It can be used as the point estimator of θ, and an approximate CI is

θ̂.± tα/2,R−1
S√
R

where S2 is the usual sample variance of θ̂1, . . . , θ̂R .
If there is a single replication, then the same reasoning applies if
we let θ̂i be the quantile estimate from within the ith batch of
data. This requires sorting the data, or a histogram, within each
batch. If the batches are large enough, then these within-batch
quantile estimates will also be approximately IID.
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Reading HW: Chapter 11.

Chapter 11 Exercises.


