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Introduction

Input Data

There are four steps in the development of a useful model of input
data.

Collect data from the real system of interest.

Identify a probability distribution to represent the input
process.

Choose parameters that determine a specific instance of the
distribution family.

Evaluate the chosen distribution and associated parameters.
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Data Collection

A useful expenditure of time is in planning. This could begin
by practice or pre-observing session.
Try to analyze the data as they are being collected. Figure
out whether the data being collected are adequate to provide
the distributions needed as input to the simulation.
Try to combine homogeneous data sets.
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Data Collection-cont.

Be aware of the possibility data censoring, in which a quantity
of interest is not observed in its entirety.

To discover whether there is a relationship between two
variables, build a scatter diagram.

Consider the possibility that a sequence of observations that
appear to be independent actually has autocorrelation.

Keep in mind the difference between input data and output or
performance data, and be sure to collect input data.
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Identifying the Distribution with Data

Divide the range of the data into intervals.

Label the horizontal axis to conform to the intervals selected.

Find the frequency of occurrences within each interval.

Label the vertical axis so that the total occurrences can be
plotted for each interval.

Plot the frequencies on the vertical axis.
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Identifying the Distribution with Data-cont.
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Figure: Examples of Ragged, Coarse and Appropriate Histograms
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Selecting the Family of Distributions

Selecting the Family of Distributions

Binomial: Models the number of successes in n trials, when
the trials are independent with common success probability, p.

Negative Binomial (also includes the Geometric
distribution): Models the number of trials required to
achieve k successes.

Poisson: Models the number of independent events that
occur in a fixed amount of time or space.

Normal: Models the number of a process that can be
thought of as the sum of a number of component processes.
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Selecting the Family of Distributions

Selecting the Family of Distributions-cont.

Log-Normal: Models the distribution of a process that can
be thought of as the product of (meaning to multiply) a
number of component processes.

Exponential: Models the time between independent events or
a process time that is memoryless.

Gamma: An extremely flexible distribution used to model
non-negative RVs.

Beta: An extremely flexible distribution used to model
bounded RVs.
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Selecting the Family of Distributions

Selecting the Family of Distributions-cont.

Erlang: Models processes that can be viewed as the sum of
several exponentially distributed processes.

Weibull: Models the time to failure for components.

Uniform (continuous or discrete): Models complete
uncertainty; all outcomes are equally likely.

Triangular: Models a process for which only the minimum,
most likely and maximum values of the distribution are known.

Empirical: Re-samples from the actual data collected; often
used when no theoretical distribution seems appropriate.
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Quantile-Quantile Plots

Quantile-Quantile Plots

The construction of histograms and the recognition of a
distributional shape are necessary ingredients of for selecting a
family of distributions to represent a sample of data.

However, a histogram is not as useful for evaluating the fit of
the chosen distribution.

Even if the intervals are chosen well, it is difficult to compare
a histogram to a continuous PDF.

A quantile-quantile (q − q) plot is a useful tool for evaluating
distribution fit that does not suffer from these problems.
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Quantile-Quantile Plots

Quantile-Quantile Plots

If X is a RV with CDF F , then, the q-quantile of X is that
value γ such that F (γ) = P(X ≤ γ) = q, for 0 < q < 1.
When F has an inverse, we write γ = F−1(q).

Now let {Xi , i = 1, 2, . . . , n} be a sample of data from X .
Order the observations from the smallest to the largest, and
denote these as {yj , j = 1, 2, . . . , n}, where j denotes the
ranking. The q − q plot is based on the fact that yj is an
estimate of the (j − 1/2)/n quantile of X .

yj ∼ F−1

(
j − 1

2

n

)
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Quantile-Quantile Plots

Now suppose that we have chosen a distribution with CDF F

as a possible representation of the distribution of X .

If F is appropriate, then, a plot of yj vs F−1[(j − 1/2)/n] will
be approximately a straight line.

If not, the points will deviate from a straight line, usually in a
systematic manner.

The decision about whether to reject some hypothesized
model is subjective.
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Quantile-Quantile Plots

Quantile-Quantile Plots

Example 9.4: A sample of 20 installation times in seconds is shown
in the text (DESS) where the sample mean is 99.99 seconds and
the sample standard deviation is 0.2832. These can serve as the
parameter estimates for the mean and variance of the normal
distribution. The observations are now ordered from smallest to
largest as follows:
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99.79 99.56 100.17 100.33
100.26 100.41 99.98 99.83
100.23 100.27 100.02 100.47
99.55 99.62 99.65 99.82
99.96 99.90 100.06 99.85

Table: Sample Installation Times
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j Value j Value j Value j Value

1 99.55 6 99.82 11 99.98 16 100.26
2 99.56 7 99.83 12 100.02 17 100.27
3 99.62 8 99.85 13 100.06 18 100.33
4 99.65 9 99.90 14 100.17 19 100.41
5 99.79 10 99.96 15 100.23 20 100.47

Table: Ordered Sample Installation Times
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Quantile-Quantile Plots

The ordered observations are plotted versus
F−1[(j − 1/2)/20], for j = 1, 2, . . . , 20, where F is the CDF of
the normal distribution with mean 99.99 and standard
deviation 0.2832, to obtain a q − q plot.

The plotted values are shown in Figure 2, along with a
histogram of the data that the density function of the normal
distribution superimposed.

Note that it is difficult to tell whether the data are well
represented by a normal distribution from the histogram, but
the general perception of a straight line is quite clear in the
q − q plot and supports the hypothesis of a normality
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Quantile-Quantile Plots
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Figure: Histogram and q − q Plot for the Example
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Sample Mean and Sample Variance

After a family of distributions has been selected, the next step
is to estimate the parameters of the distribution.

Preliminary Statistics: Sample Mean and Sample Variance

If the observations in a sample of size n are X1,X2, . . . ,Xn, we
have

X̄ =

∑n
i=1 Xi

n

S2 =

∑n
i=1 (Xi − X̄ )2

n − 1
=

∑n
i=1 X 2

i − nX̄ 2

n − 1
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Sample Mean and Sample Variance

If the data are discrete and have been grouped in a frequency
distribution, the above equations can be modified to provide for
much greater computational efficiency as

X̄ =

∑k
j=1 fjXj

n

S2 =

∑k
j=1 fjX

2
j − nX̄ 2

n − 1

where k is the number of distinct values of X and fj is the
observed frequency of the value Xj of X .
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Sample Mean and Sample Variance

When the raw data are not available, we can use the following

X̄ =

∑c
j=1 fjmj

n

S2 =

∑c
j=1 fjm

2
j − nX̄ 2

n − 1

where fj and mj are the frequency and the midpoint of the jth
interval.
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Sample Mean and Sample Variance

Example 9.5: Grouped Data: The data in Table 9.1 in the text
(DESS) can be analyzed to obtain n = 100, f1 = 12, X1 = 0,
f2 = 10, X2 = 1, etc. We thus have

X̄ =

∑k
j=1 fjXj

n
=

364

100
= 3.64

S2 =

∑k
j=1 fjX

2
j − nX̄ 2

n − 1
=

2080 − 100(3.64)2

99
= 7.63
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Example 9.6: Continuous Data in Class Intervals Using the data in
Table 9.2 in the text, we can approximate the mean and the
variance as f1 = 23, m1 = 1.5, f2 = 10, m2 = 4.5, etc. and

X̄ =

∑c
j=1 fjmj

n
=

614

50
= 12.28

S2 =

∑c
j=1 fjm

2
j − nX̄ 2

n − 1
=

37, 226.5 − (50)(12.28)2

49
= 605.849
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Suggested Estimators

Distribution Parameter(s) Suggested Estimator(s)

Poisson α α̂ = X̄

Exponential λ λ̂ = 1/X̄

Gamma β, θ β̂

θ̂ = 1/X̄

Table: Suggested Estimators for Distributions

System Simulation Chapter 9: Input Modeling

Parameter Estimation

Suggested Estimators

Suggested Estimators

Distribution Parameter(s) Suggested Estimator(s)

Normal µ, σ2 µ̂ = X̄

σ̂2 = S2

Log-Normal µ, σ2 µ̂ = X̄ (after taking the log)

σ̂2 = S2 (after taking the log)

Table: Suggested Estimators for Distributions
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Suggested Estimators

Suggested Estimators

Distribution Parameter(s) Suggested Estimator(s)

Weibull (v = 0) α, β β̂0 = X̄/S

β̂j = β̂j−1 − f (β̂j−1)

f ′(β̂j−1)

Beta β1, β2 ψ(β̂1) + ψ(β̂1 − β̂2) = ln (G1)

ψ(β̂2) + ψ(β̂1 − β̂2) = ln (G2)
where

G1 =
(∏n

i=1 Xi

)1/n

G2 =
[∏n

i=1 (1 − Xi )
]1/n

Table: Suggested Estimators for Distributions
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Suggested Estimators

Example 9.7: Assume that the arrival data in Table 9.1 require
analysis. By comparison with Poisson PFM and CDF, an
examination of the histogram of the data suggests a Poisson
distributional assumption with unknown parameter α. The
estimator for α is X̄ , which was found in Example 9.5. Thus,
α̂ = 3.64 Recall that the true mean and variance are equal for the
Poisson distribution.
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Suggested Estimators

Suggested Estimators

Example 9.10: The estimator β̂ for the gamma distribution
requires the computation of the quantity 1/M, where

M = ln X̄ − 1

n

n∑

i=1

lnXi

Also, θ̂ is given by

θ̂ =
1

X̄
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Suggested Estimators

Suggested Estimators

Using the data given in the Example, to estimate β̂ and θ̂, it is
necessary to compute M using the above equation.

X̄ =
564.32

20
= 28.22 ⇒ ln X̄ = 3.34

20∑

i=1

lnXi = 63.99 ⇒ M = 3.34 − 63.99

20
= 0.14 ⇒ 1

M
= 7.14

By interpolation, β̂ = 3.728. Finally,

θ̂ =
1

28.22
= 0.035
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Chi-Square Test

Goodness-of-fit tests provide helpful guidance for evaluating the
suitability of a potential input model; however, there is no single
correct distribution in a real application, so you should not be a
slave to the verdict of such a test. It is especially important to
understand the effect of sample size. If very little data are
available, then, a goodness-of-fit test is unlikely to reject any
candidate distributions; but if a lot of data are available, then, a
goodness-of-fit test will likely to reject all candidate distributions.
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Chi-Square Test

This test formalizes the intuitive idea of comparing the histogram
to the shape of the PDF or PMF. This test is valid for large
sample sizes and for both discrete and continuous distributions
when parameters are estimated by maximum likelihood. The test
procedure begins by arranging the n observations into a set of k

class intervals or cells. The test statistic is given by

χ2
0 =

k∑

i=1

(Oi − Ei )
2

Ei

where Oi and Ei are the observed and expected frequencies in the
ith class interval.
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Chi-Square Test

The expected frequency is computed as Ei = npi , where pi is the
theoretical probability associated with the ith class interval. We
can show that χ2

0 approximately follows the chi-square distribution
with k − s − 1 degrees of freedom, where s is the number of
parameters of the hypothesized distribution estimated by the
sample statistics. The hypotheses are the following:

H0: The RV X conforms to the distributional assumption

H1: The RV X does not conform.

The null hypothesis is rejected if χ2
0 > χ2

α,k−s−1.
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Chi-Square Test

Chi-Square Test

Sample Size Number of Class Intervals
n k

20 do not use the chi-square test
50 5 to 10
100 10 to 20
> 100

√
n to n/5

Table: Recommendations for # of Class Intervals for Continuous Data
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Chi-Square Test

Example 9.14: Consider the data in Example 9.2 and 9.7. The data
appeared to follow a Poisson distribution; hence the parameter
α̂ = 3.64, was found. Thus the following hypotheses are formed:

H0: The RV X is Poisson distributed

H1: The RV X is not Poisson distributed

The PMF for the Poisson distribution is given as

p(x) =

{
e−ααx

x! , x = 0, 1, 2, . . .
0, otherwise
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Chi-Square Test

For α = 3.64, the probabilities associated with various values of x

are obtained as

p(0) = 0.026

p(1) = 0.096

p(2) = 0.174
...

p(10) = 0.003

p(≥ 11) = 0.001
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From this information, Table 9.6 in the text (DESS) is
constructed. The value of E1 is given by np0 = 100(0.026) = 2.6.
In a similar manner, the remaining Ei values are computed Since
E1 = 2.6 < 5, E1 and E2 are combined. In that case, O1 and O2

are also combined, and k is reduced by one. The last five classes
are also combined, for the same reason, and k is further reduced
by four. The calculated χ2

0 = 27.68. The degrees of freedom for
the tabulated value of χ2 is k − s − 1 = 7 − 1 − 1 = 5. Here,
s = 1, since one parameter, α̂ was estimated from the data. At the
0.05 level of significance, the critical value χ2

0.05,5 = 11.1. Thus,
H0 would be rejected at the level of significance 0.05.
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Chi-Square Test with Equal Probabilities

If a continuous distributional assumption is being tested, class
intervals that are equal in probability rather than equal in width of
interval should be used. Unfortunately, there is as yet no method
for figuring out the probability associated with each interval that
maximizes the power for a test of a given size. (The power of a
test is defined as the probability of rejecting a false hypothesis.)
However, if using equal probabilities, then, pi = 1/k . We
recommend,

Ei = npi ≥ 5 ⇒ n

k
≥ 5 ⇒ k ≤ n

5

The above expression was used in coming up with the
recommendations for maximum number of class intervals.
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Example 9.15 (Chi-Square Test for Exponential Distribution): The
failure data in Example 9.11 appeared to follow an exponential
distribution, and the parameter λ̂ = 1/X̄ = 0.084 was computed.
Thus, the following hypotheses are formed:

H0: the RV is exponentially distributed

H1: the RV is not exponentially distributed

In order to perform the chi-square test with intervals of equal
probability, the endpoints of the class intervals must be found.
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Chi-Square Test

Above equations indicates that the number of intervals should be
less than or equal to n/5. Here, n = 50, and so k ≤ 10. It is
recommended that 7 to 10 class intervals be used. Let k = 8, then
each interval will have probability p = 0.125. The endpoints for
each interval are computed from the CDF for the exponential
distribution as

F (ai ) = 1 − e−λai

where ai represents the endpoint of the ith interval, i = 1, 2, . . . , k .
Since, F (ai ) is the cumulative area from zero to ai , F (ai ) = ip, so
the above equation can be written as

ip = 1 − e−λai ⇒ e−λai = 1 − ip
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Taking the log of both sides and solving for ai gives a general
result for the endpoints of k equiprobable intervals for the
exponential distribution.

ai = − 1

λ
ln (1 − ip), i = 0, 1, . . . , k

Regardless of the value of λ, the above equation will always result
in a0 = 0 and ak = ∞. With λ̂ = 0.084 and k = 8, a1 is computed
from the equation as (see others in the text)

a1 = − 1

0.084
ln (1 − 0.125) = 1.590

Since χ2
0 = 39.6 > χ2

0.05,6 = 12.6, the null hypothesis is rejected.
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Kolmogorov-Smirnov Goodness-of-Fit Test

The Kolmogorov-Smirnov (K-S) test formalizes the idea behind
examining a q − q plot. It is particularly useful when sample sizes
are small and when no parameters are estimated from the data.
When parameter estimates have been made, the critical values in
Table A.8 are biased; in particular, they are too conservative.

H0: the inter-arrival times are exponentially distributed

H1: the inter-arrival times are not exponentially distributed
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Kolmogorov-Smirnov Goodness-of-Fit Test

We can show that if the underlying distribution of the inter-arrival
times is exponential, then, the arrival times are uniformly
distributed on the interval (0,T ). Hence, we first obtain the arrival
times as T1, T1 + T2, ..., T1 + . . .+ T50. We normalize the data
to a (0, 1) interval so that we can apply the K-S test as before.
Performing the same tasks as we did before, we obtain
D+ = 0.1054 and D− = 0.0080, and hence, D = 0.1054. The
critical value of D is obtained from the K-S table for a level of
significance α = 0.05 and n = 50 is D0.05 = 1.36/

√
n = 0.1923.

Since D < D0.05, we cannot reject the null hypothesis.
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p-Values and “Best Fits”

To apply a goodness-of-fit test, a significance level must be
chosen. Recall that the significance level is the probability of
falsely rejecting the null hypothesis. Due to the advances in
computing, we can now specify a different level of significance,
such as 0.07 etc. However, rather than require a pre-specified
significance level, many software packages compute a p-value for
the test statistic. This is the value of the significance level at
which one would just reject the null hypothesis for the given value
of the test statistic. Therefore, a large p-value tends to indicate a
good fit (we would have to accept a large chance of error in order
to reject), while a small p-value suggests a poor fit (to accept we
would have to insist on almost no risk). The p-value can be viewed
as a measure of fit, with larger values being better.
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Fitting a Non-Stationary Poisson Process

Fitting a non-stationary Poisson process (NSPP) to arrival data is
a difficult problem, in general, because we seldom have knowledge
about the appropriate form of the arrival rate function λ(t). One
approach is to choose a very flexible model with lots of parameters
and fit it with a method such as maximum likelihood. Another
one, that we consider here, is to approximate the arrival rate as
being constant over some basic interval of time, such as an hour or
a day or a month etc., but varying from time interval to time
interval. The problem then becomes choosing the basic time
interval and estimating the arrival rate within each interval.
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Selecting Input Models without Data

Unfortunately, it is often necessary in practice to develop a
simulation model before any process data are available. There are
a number of ways to obtain information about a process even if
data are not available:

Engineering Data

Expert Option

Physical or Conventional Limitations

The Nature of the Processes

When data are not available, the uniform, triangular and beta
distributions are often used as input models.
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Multivariate and Time-Series Input Models

Variables may be related, and if the variables are the inputs of a
simulation model, the relationship should be investigated and
taken into consideration. Let X1 and X2 be two RVs, and let
µi = E (Xi ) and σ2

i = V (Xi ) be the mean and variance of Xi ,
respectively. The covariance and correlation are measures of the
linear dependence between X1 and X2. The covariance and
correlation between X1 and X2 is defined as

cov(X1,X2) = E [(X1 − µ1)(X2 − µ2)] = E (X1X2) − µ1µ2

ρ = corr(X1,X2) =
cov(X1,X2)

σ1σ2
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Multivariate and Time-Series Input Models

Now suppose that we have a sequence of RVs X1,X2, . . . that are
identically distributed, but could be dependent. We refer to such a
sequence as a time series and to cov(Xt ,Xt+h) and corr(Xt ,Xt+h)
as the lag-h auto-covariance and lag-h auto-correlation,
respectively. If the value of the auto-covariance depends only on h

and not on t, then, we say that the time series is covariance

stationary.
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Multivariate and Time-Series Input Models

If X1 and X2 each are normally distributed, then dependence
between them can be modeled by the bivariate normal distribution
with parameters µ1, µ2, σ

2
1, σ

2
2 and ρ = corr(X1,X2) To estimate,

ρ, assume that we have (X11,X21), (X12,X22), . . . , (X1n,X2n)
which are n IID pairs.
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Multivariate and Time-Series Input Models

The sample covariance and the correlation are

ĉov(X1,X2) =
1

n − 1

n∑

j=1

(X1j − X̄1)(X2j − X̄2)

=
1

n − 1




n∑

j=1

X1jX2j − nX̄1X̄2





ρ̂ =
ĉov(X1X2)

σ̂1σ̂2

where X̄1 and X̄2 are the sample means, and σ̂1 and σ̂2 are the
sample standard deviations.
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Multivariate and Time-Series Input Models

The following simple algorithm can be used to generate bivariate
normal RVs.

1 Generate Z1 and Z2, independent standard normal RVs.

2 Set X1 = µ1 + σ1Z1.

3 Set X2 = µ2 + σ2

(
ρZ1 +

√
1 − ρ2Z2

)
.
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AR(1) Model

If X1,X2, . . . is a sequence of identically distributed, but dependent
and covariance-stationary RVs, then, there are a number of time
series models that can be used to represent the process. We will
describe two models that have the characteristic that the
autocorrelations take the form

ρh = corr(Xt ,Xt+h) = ρh (1)

for h = 1, 2, . . ..
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AR(1) Model

Consider the time-series model

Xt = µ+ φ(Xt−1 − µ) + ǫt (2)

for t = 2, 3, . . ., where ǫ2, ǫ3, . . . are IID normal with mean 0 and
variance σ2

ǫ and −1 ≤ φ ≤ 1. If the initial value of X1 is chosen
appropriately, then, X1,X2, . . . are all normally distributed with
mean µ, variance σ2

ǫ /(1 − φ2) and ρh = φh, for h = 1, 2, . . ..This
time-series model is called the autoregressive order-1 model, or
AR(1) for short. Estimation of the parameter φ can be obtained
from the fact that φ = ρ1 = corr(Xt ,Xt+1) the lag-1
autocorrelation.
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EAR(1) Model

Xt =

{
φXt−1, with probability φ
φXt−1 + ǫt , with probability 1 − φ

(3)

for t = 2, 3, . . ., where ǫ2, ǫ3, . . . are IID exponential with mean
1/λ and 0 ≤ φ ≤ 1. If the initial value X1 is chosen appropriately,
then, X1,X2, . . . are all exponentially distributed with mean 1/λ
and ρh = φh, for h = 1, 2, . . .. This time-series model is called the
exponential autoregressive order-1 model, or EAR(1) for short.
Only autocorrelations greater than 0 can be represented by this
model. Estimating of the parameters proceeds as for the AR(1) by

setting φ̂ = r̂ho, the estimated lag-1 autocorrelation, and setting
λ̂ = 1/X̄ .



System Simulation Chapter 9: Input Modeling

Parameter Estimation

Chi-Square Test

EAR(1) Algorithm

1 Generate X1 from the exponential distribution with mean 1/λ.
Set t = 2.

2 Generate U from the uniform distribution on U[0, 1]. If
U ≤ φ, then, set Xt = φXt−1.
Otherwise, generate ǫt from the exponential distribution with
mean 1/λ and set Xt = φXt−1 + ǫt

3 Set t = t + 1 and go to Step 2.
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Parameter Estimation

Chi-Square Test

The Normal-to-Anything Transformation

The bivariate normal distribution and the AR(1) and EAR(1)
time-series models are useful input models that are easy to fit and
simulate. However, the marginal distribution is either normal or
exponential, which is certainly not the best choice for many
applications. Fortunately, we can start with a bivariate normal or
AR(1) model and transform it to have any marginal distributions
we want (including exponential). We refer this as the normal to

anything transformation, or NORTA for short. See the text
(DESS) for more details.
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Summary

Reading HW: Chapter 9.

Chapter 9 Exercises.


