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Introduction

Introduction

This chapter deals with procedures for sampling from a variety
of widely-used continuous and discrete distributions.

The purpose of the chapter is to explain and illustrate some
widely-used techniques for generating random variates.

The techniques mentioned here are the inverse-transform
technique, the acceptance-rejection technique.
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Introduction

Introduction-cont.
Assumption

We assume that we have U[0, 1] RVs R1,R2, . . . where

fR(x) =

{
1, 0 ≤ x ≤ 1
0, otherwise

FR(x) =





0, x < 0
x , 0 ≤ x ≤ 1
1, x > 1
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Inverse-Transform Technique

Inverse-Transform (IT) Technique

The IT technique can be used to sample from the exponential,
the uniform, the Weibull, the triangular distributions and from
empirical distributions.

It is also the underlying principle for sampling from a wide
variety of discrete distributions.

We will explain it for the exponential distribution and then
apply to the others.

Computationally, it is the most straightforward technique, but
not always the most efficient.



Systems Simulation Chapter 8: Random-Variate Generation

Inverse-Transform Technique

Exponential Distribution

IT for the Exponential Distribution

The PDF and CDF of the exponential RV X are

f (x) =

{
λe−λx , x ≥ 0

0, otherwise

F (X ) =

{
1− e−λx , x ≥ 0

0, otherwise

λ can be interpreted as the mean number of occurrences per time
unit, and the mean of X is E (Xi ) = 1/λ.
The IT can be utilized in principle for any distribution, but it is
most useful when the inverse of the CDF F (X ), F−1 is easily
computed.
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Inverse-Transform Technique

Exponential Distribution

IT for the Exponential Distribution-cont.

Step (1) Compute the CDF of the RV X .

For the ED, it is F (X ) = 1− e−λx , x ≥ 0.

Step (2) Set F (X ) = R on the range of X .

For the ED, it is 1− e−λX = R on the range x ≥ 0.

Step (3) Solve the equation F (X ) = R for X in terms of R .

1− e−λX = R

e−λX = 1− R

−λX = ln (1− R)

X = − 1

λ
ln (1− R) → X = F−1(R)
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Inverse-Transform Technique

Exponential Distribution

IT for the Exponential Distribution-cont.

Step (4) Generate RNs R1,R2, . . . and compute the RVs using
Xi = F−1(Ri ).

For the ED, it is

X = F−1(R) = − 1

λ
ln (1− R) ⇒ Xi = − 1

λ
ln (1− Ri )

Since both Ri and 1− Ri are uniform, we can write

Xi = − 1

λ
ln (Ri )
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Inverse-Transform Technique

Exponential Distribution

Exponential Distribution-cont.
Example

Table : Generation of ED-RVs with Mean 1

i 1 2 3 4 5
Ri 0.1306 0.0422 0.6597 0.7965 0.7696
Xi 0.1400 0.0431 1.0780 1.5920 1.4680
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Inverse-Transform Technique

Exponential Distribution

IT for the Exponential Distribution-cont.
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Figure : Graphical View of the IT Technique
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Inverse-Transform Technique

Exponential Distribution

Building on Exponential Distribution

Y = 2
v∑

i=1

Xi ∼ C-S (2v)

Y = β
α∑

i=1

Xi ∼ gamma (α, β)

Y =

∑
a

i=1 Xi∑
a+b

i=1 Xi

∼ beta (a, b)
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Inverse-Transform Technique

Uniform Distribution

Uniform Distribution

Step (1) The CDF is given by

f (x) =

{
1

b−a
, a ≤ x ≤ b

0, otherwise

F (X ) =





0, x < a
x−a

b−a
, a ≤ x ≤ b

1, x > b

Step (2) Set F (X ) = (X − a)/(b − a) = R

Step (3) Solve for X in terms of R to obtain X = a+ (b − a)R
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Inverse-Transform Technique

Weibull Distribution

Weibull Distribution

Step (1) The CDF is given, when v = 0, by

f (x) =

{
β
αβ x

β−1e−(x/α)β , x ≥ 0

0, otherwise

F (X ) = 1− e−(x/α)β , x ≥ 0

Step (2) Set F (X ) = 1− e−(x/α)β = R

Step (3) Solve for X in terms of R to obtain
X = α[− ln (1− R)]1/β
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Inverse-Transform Technique

Triangular Distribution

IT Example for the Triangular Distribution
Triangular Distribution (with end points (0, 2) and mode 1

f (x) =





x , 0 ≤ x ≤ 1
2− x , 1 < x ≤ 2
0, otherwise

F (X ) =





0, x ≤ 0
x
2

2 , 0 < x ≤ 1

1− (2−x)2

2 , 1 < x ≤ 2
1, x > 2
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Inverse-Transform Technique

Triangular Distribution

IT Example for the Triangular Distribution-cont.
Triangular Distribution (with end points (0, 2) and mode 1)

For 0 ≤ X ≤ 1,

R =
X 2

2

and for 1 ≤ X ≤ 2,

R = 1− (2− x)2

2

Thus,

X =

{ √
2R , 0 ≤ R ≤ 1

2

2−
√
2(1− R), 1

2 < R ≤ 1
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Inverse-Transform Technique

Empirical Continuous Distributions

IT Example for Empirical Continuous Distributions

We have the following data: 2.76, 1.83, 1.80, 1.45, 1.24 The data
are arranged from smallest to largest. The smallest possible value
is assumed to be 0, so we define x(0) = 0. Each interval has equal
probability of 1/n = 1/5. The slope of the ith line segment is

ai =
x(i) − x(i−1)

i/n − (i − 1)/n
=

x(i) − x(i−1)

1/n

The inverse CDF, when (i − 1)/n < R < i/n, is given by

X = F̂−1(R) = x(i−1) + ai

(
R − i − 1

n

)
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Inverse-Transform Technique

Empirical Continuous Distributions

IT Example for Empirical Continuous Distributions-cont.

For example, for R1 = 0.71, we have

X1 = x(4−1) + a4

(
R1 −

4− 1

n

)
= 1.45 + 1.90(0.71− 0.60) = 1.66

Interval Probability C.P. Slope
i x(i−1) < x < x(i) 1/n i/n ai
1 0.00 < x ≤ 0.80 0.2 0.2 4.00
2 0.80 < x ≤ 1.24 0.2 0.4 2.20
3 1.24 < x ≤ 1.45 0.2 0.6 1.05
4 1.45 < x ≤ 1.83 0.2 0.8 1.90
5 1.83 < x ≤ 2.76 0.2 1.0 4.65
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Inverse-Transform Technique

Empirical Continuous Distributions

IT Example for Empirical Continuous Distributions-cont.
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Figure : CDF for the Example
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Inverse-Transform Technique

Continuous Distributions without Closed-Form Inverse

Continuous Distributions without Closed-Form Inverse

Some distributions do not have a closed form expressions for
their CDF or its inverse, such as normal, gamma and beta
distributions.

If we are willing to approximate the inverse CDF, or
numerically integrate, we can use the IT method for RV
generation.

A simple approximation, for instance, to the inverse CDF of
the normal distribution is proposed by Schmeiser (1979).

X = F−1(R) ≈ R0.135 − (1− R)0.135

0.1975
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Inverse-Transform Technique

Continuous Distributions without Closed-Form Inverse

Normal Approximation

Φ(x) ≈ 1− φ(x)[b1t + b2t
2 + b3t

4 + b4t
4 + b5t

5], x > 0

where

t = (1 + px)−1

and

p = 0.2316419, b1 = 0.31938, b2 = −0.35656

b3 = 1.78148, b4 = −1.82125, b5 = 1.33027
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Inverse-Transform Technique

Discrete Distributions

Discrete Distributions
An Empirical Discrete Distribution Example

The PMF and CDF are given as follows:

p(0) = P(X = 0) = 0.50

p(1) = P(X = 1) = 0.30

p(2) = P(X = 2) = 0.20

F (X ) =





0.0, x ≤ 0
0.5, 0 ≤ x < 1
0.8, 1 ≤ x < 2
1.0, x ≥ 2
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Inverse-Transform Technique

Discrete Distributions

Discrete Distributions
An Empirical Discrete Distribution Example

For generating discrete RVs, the IT technique becomes a
table-lookup procedure in this example. For R = R1, if

F (xi−1) = ri−1 < R ≤ ri = F (Xi )

then, set X1 = xi . We have the following generation scheme here:

X =





0, R ≤ 0.5
1, 0.5 < R ≤ 0.8
2, 0.8 < x ≤ 1.0
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Inverse-Transform Technique

Discrete Distributions

Discrete Distributions
An Empirical Discrete Distribution Example
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Figure : CDF for the Example
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Inverse-Transform Technique

Discrete Distributions

Discrete Distributions
Discrete Uniform Distribution Example

The PMF and CDF are given as

p(x) =
1

k
, x = 1, 2, . . . , k

F (x) =





0, x < 1
1
k
, 1 ≤ x < 2

2
k
, 2 ≤ x < 3
...,

...
k−1
k

, k − 1 ≤ x < k

1, k ≤ x
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Inverse-Transform Technique

Discrete Distributions

Discrete Distributions
Discrete Uniform Distribution Example

Using F (xi−1) = ri−1 < R ≤ ri = F (Xi ), we have the following.

ri−1 =
i − 1

k
< R ≤ ri =

i

k

Solving it for i

i − 1 < Rk < i ⇒ Rk ≤ i < Rk + 1

From the above inequality, we obtain

X = ⌈Rk⌉
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Acceptance-Rejection Technique

Uniform Distribution

Acceptance-Rejection Technique
Uniform Distribution

Step (1) Generate a RN R .

Step (2) -

(a) If R ≥ 1/4, accept X = R , then, go to Step 3.
(b) If R < 1/4, reject R , then, go to Step 1.

-

Step (3) If another RV needed, go to Step 1, otherwise stop.
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Acceptance-Rejection Technique

Poisson Distribution

Acceptance-Rejection Technique
Poisson Distribution

The PMF of a Poisson RV is

p(n) = P(N = n) =
e−ααn

n!
, n = 0, 1, 2, . . .

We can write

N = n ⇔ A1 + A2 + . . .+ An ≤ 1 < A1 + A2 + . . .+ An + An+1

Now, we let Ai = (−1/α) lnRi (the IT method for the ED)
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Acceptance-Rejection Technique

Poisson Distribution

Acceptance-Rejection Technique
Poisson Distribution

Using the inequality in the previous slide, we obtain

n∑

i=1

− 1

α
ln (Ri ) ≤ 1 <

n+1∑

i=1

− 1

α
ln (Ri )

ln

n∏

i=1

Ri =

n∑

i=1

ln (Ri ) ≥ −α >

n+1∑

i=1

ln (Ri ) = ln

n+1∏

i=1

Ri

n∏

i=1

Ri ≥ e−α >
n+1∏

i=1

Ri
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Acceptance-Rejection Technique

Poisson Distribution

Acceptance-Rejection Technique
Poisson RV Generation Procedure

Step (1) Set n = 0,P = 1.

Step (2) Generate a RN Rn+1, and replace P by PRn+1.

Step (3) If P < e−α, then, accept N = n; otherwise reject n,
increase n by once, and go to step 2.
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Acceptance-Rejection Technique

Non-Stationary Poisson Process

Acceptance-Rejection Technique
Non-Stationary Poisson RV Generation Procedure

Step (1) Let λ∗ = max0≤t≤T λ(t) be the max of the arrival rate
function and set t = 0 and i = 1.

Step (2) Generate E from the exponential distribution with rate
λ∗ and let t = t + E (arrival time of the stationary
Poisson process)

Step (3) Generate RN R . If R ≤ λ(t)/λ∗, then, let τi = t and
i = i + 1.

Step (4) Go to step 2.
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Acceptance-Rejection Technique

Gamma Distribution

Acceptance-Rejection Technique
Gamma RV Generation Procedure

Step (1) Compute a = 1/(2/β − 1)1/2, b = β − ln 4

Step (2) Generate R1 and R2. Set V = R1/(1− R1)

Step (3) Compute X = βV a.

Step (4) -

(a) If X > b + (βa + 1) ln (V )− ln (R2
1R2), reject X and

return to step 2.
(b) If X ≤ b + (βa + 1) ln (V )− ln (R2

1R2), accept X .

-

Step (5) X has mean and variance both equal to β. If it is desired
to have mean 1/θ and variance 1/βθ2, replace X by
X/(βθ).
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Special Properties

Direct Transformation for the Normal and Lognormal Distributions

Special Properties
Direct Transformation for the Normal and Lognormal Distributions

Consider two standard normal RVs, Z1 and Z2, plotted as a point
in the plane as shown in the figure on the next slide, and

Z1 = B cos θ

Z2 = B sin θ

It is known that B2 = Z 2
1 + Z 2

2 has a chi-square distribution with 2
degrees of freedom, which is equivalent to an ED with mean 2. So,
we can write, B = (−2 lnR)1/2, and hence,

Z1 = (−2 lnR1)
1/2 cos 2πR2

Z2 = (−2 lnR1)
1/2 sin 2πR2
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Special Properties

Direct Transformation for the Normal and Lognormal Distributions

Special Properties
Direct Transformation for the Normal and Lognormal Distributions

0
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B

Z1

Z2

(Z1, Z2)

Z1-axis

Z2-axis

Figure : Polar Representation of a Pair of Std. Nor. Variables
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Special Properties

Convolution Method

Special Properties
Convolution Method-Erlang Distribution

An Erlang RV X with parameters (k , θ) can be shown to be the
sum of k independent exponential RVs, Xi , i = 1, . . . , k each with
mean 1/kθ. The convolution approach is to generate X1, . . . ,Xk ,
then, sum them to get X . Therefore,

X =
k∑

i=1

− 1

kθ
lnRi

= − 1

kθ
ln

(
k∏

i=1

Ri

)
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Special Properties

More Special Properties

Special Properties
More Special Properties-Beta Distribution

Assume that X1 ∼ G (β1, θ1 = 1/β1) and X2 ∼ G (β2, θ2 = 1/β2),
and X1 and X2 are independent. Then,

Y =
X1

X1 + X2

has a beta distribution with β1 and β2 on the interval (0, 1). If we
want Y to be defined on (a, b), then,

Y = a+ (b − a)

(
X1

X1 + X2

)
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Summary

Reading HW: Chapter 8.

Chapter 8 Exercises.


