

Introduction

- This chapter deals with procedures for sampling from a variety of widely-used continuous and discrete distributions.
- The purpose of the chapter is to explain and illustrate some widely-used techniques for generating random variates.

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

• The techniques mentioned here are the inverse-transform technique, the acceptance-rejection technique.

Introduction-cont.

Assumption

• We assume that we have U[0,1] RVs R_1, R_2, \ldots where

$$f_{R}(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$
$$F_{R}(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

Systems Simulation Chapter 8: Random-Variate Generation

Inverse-Transform (IT) Technique

• The IT technique can be used to sample from the exponential, the uniform, the Weibull, the triangular distributions and from empirical distributions.

・ロ・・師・・問・・日・ うくら

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

- It is also the underlying principle for sampling from a wide variety of discrete distributions.
- We will explain it for the exponential distribution and then apply to the others.
- Computationally, it is the most straightforward technique, but not always the most efficient.

IT for the Exponential Distribution

The PDF and CDF of the exponential RV X are

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{otherwise} \end{cases}$$
$$F(X) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

 $F(X) = \begin{cases} -1 & -1 \\ 0, & \text{otherwise} \end{cases}$ λ can be interpreted as the mean number of occurrences per time

unit, and the mean of X is $E(X_i) = 1/\lambda$.

The IT can be utilized in principle for any distribution, but it is most useful when the inverse of the CDF F(X), F^{-1} is easily computed.

Systems Simulation Chapter 8: Random-Variate Generation

IT for the Exponential Distribution-cont.

Step (1) Compute the CDF of the RV X. For the ED, it is $F(X) = 1 - e^{-\lambda x}, x \ge 0$. Step (2) Set F(X) = R on the range of X. For the ED, it is $1 - e^{-\lambda X} = R$ on the range $x \ge 0$. Step (3) Solve the equation F(X) = R for X in terms of R. $1 - e^{-\lambda X} = R$

$$e^{-\lambda X} = 1 - R$$

$$e^{-\lambda X} = \ln (1 - R)$$

$$X = -\frac{1}{\lambda} \ln (1 - R) \rightarrow X = F^{-1}(R)$$

・ロト ・日 ・ ・ エ ・ ・ 日 ・ くらく

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

IT for the Exponential Distribution-cont.

Step (4) Generate RNs R_1, R_2, \ldots and compute the RVs using $X_i = F^{-1}(R_i)$.

For the ED, it is

$$X=F^{-1}(R)=-rac{1}{\lambda}\ln\left(1-R
ight)\Rightarrow X_{i}=-rac{1}{\lambda}\ln\left(1-R_{i}
ight)$$

Since both R_i and $1 - R_i$ are uniform, we can write

$$X_i = -\frac{1}{\lambda} \ln \left(R_i \right)$$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

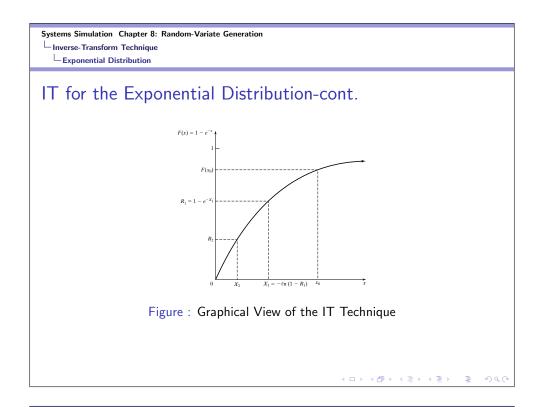
Systems Simulation Chapter 8: Random-Variate Generation

Exponential Distribution-cont.

Example

Table :	Generation	of ED-RVs wi	th Mean 1
---------	------------	--------------	-----------

i	1	2	3	4	5
Ri	0.1306	0.0422	0.6597	0.7965	0.7696
Xi	0.1400	0.0431	1.0780	1.5920	1.4680



 $L_{\text{potential Distribution}}$ **Building on Exponential Distribution** $\begin{aligned}
& = 2\sum_{i=1}^{\nu} X_i \sim C \cdot S(2\nu) \\
& = 2\sum_{i=1}^{\alpha} X_i \sim \text{gamma}(\alpha, \beta) \\
& = \sum_{i=1}^{a} X_i \sim \text{beta}(a, b)
\end{aligned}$

Systems Simulation Chapter 8: Random-Variate Generation

Uniform Distribution

Step (1) The CDF is given by $f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b\\ 0, & \text{otherwise} \end{cases}$ $F(X) = \begin{cases} 0, & x < a\\ \frac{x-a}{b-a}, & a \le x \le b\\ 1, & x > b \end{cases}$

Step (2) Set
$$F(X) = (X - a)/(b - a) = R$$

Step (3) Solve for X in terms of R to obtain $X = a + (b - a)R$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Systems Simulation Chapter 8: Random-Variate Generation

Weibull Distribution

Step (1) The CDF is given, when v = 0, by

$$f(x) = \left\{egin{array}{c} rac{eta}{lpha^eta} x^{eta-1} e^{-(x/lpha)^eta}, & x \ge 0 \ 0, & ext{otherwise} \end{array}
ight.$$
 $F(X) = 1 - e^{-(x/lpha)^eta}, x \ge 0$

Step (2) Set $F(X) = 1 - e^{-(x/\alpha)^{\beta}} = R$ Step (3) Solve for X in terms of R to obtain

$$X = \alpha [-\ln (1-R)]^{1/\beta}$$

(ロ) (型) (目) (目) (日) (の)()

IT Example for the Triangular Distribution

Triangular Distribution (with end points (0, 2) and mode 1

$$f(x) = \begin{cases} x, & 0 \le x \le 1\\ 2 - x, & 1 < x \le 2\\ 0, & \text{otherwise} \end{cases}$$
$$F(X) = \begin{cases} 0, & x \le 0\\ \frac{x^2}{2}, & 0 < x \le 1\\ 1 - \frac{(2 - x)^2}{2}, & 1 < x \le 2\\ 1, & x > 2 \end{cases}$$

Systems Simulation Chapter 8: Random-Variate Generation

IT Example for the Triangular Distribution-cont. Triangular Distribution (with end points (0, 2) and mode 1)

For $0 \leq X \leq 1$,

$$R=\frac{X^2}{2}$$

and for $1 \leq X \leq 2$,

$$R = 1 - \frac{(2-x)^2}{2}$$

Thus,

$$X = \begin{cases} \sqrt{2R}, & 0 \le R \le \frac{1}{2} \\ 2 - \sqrt{2(1-R)}, & \frac{1}{2} < R \le 1 \end{cases}$$

うせん 聞 ふぼやんぼやん ロマ

・ロット 4回ッ 4回ッ 4回ッ 4日~

IT Example for Empirical Continuous Distributions

We have the following data: 2.76, 1.83, 1.80, 1.45, 1.24 The data are arranged from smallest to largest. The smallest possible value is assumed to be 0, so we define $x_{(0)} = 0$. Each interval has equal probability of 1/n = 1/5. The slope of the *i*th line segment is

$$a_i = \frac{x_{(i)} - x_{(i-1)}}{i/n - (i-1)/n} = \frac{x_{(i)} - x_{(i-1)}}{1/n}$$

The inverse CDF, when (i - 1)/n < R < i/n, is given by

$$X = \widehat{F}^{-1}(R) = x_{(i-1)} + a_i \left(R - \frac{i-1}{n}\right)$$

Systems Simulation Chapter 8: Random-Variate Generation

IT Example for Empirical Continuous Distributions-cont.

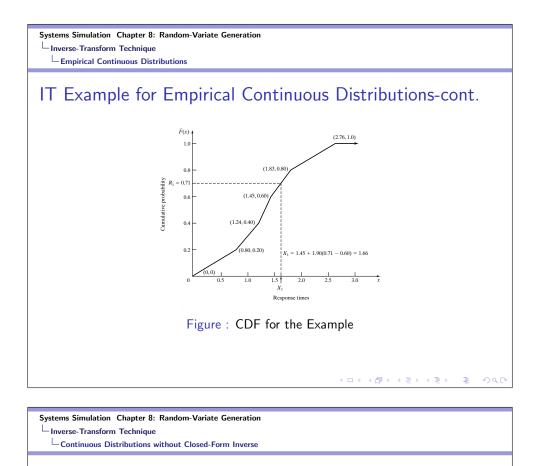
For example, for $R_1 = 0.71$, we have

$$X_1 = X_{(4-1)} + a_4 \left(R_1 - \frac{4-1}{n} \right) = 1.45 + 1.90(0.71 - 0.60) = 1.66$$

	Interval	Probability	C.P.	Slope
i	$x_{(i-1)} < x < x_{(i)}$	1/n	i/n	ai
1	$0.00 < x \le 0.80$	0.2	0.2	4.00
2	$0.80 < x \le 1.24$	0.2	0.4	2.20
3	$1.24 < x \le 1.45$	0.2	0.6	1.05
4	$1.45 < x \le 1.83$	0.2	0.8	1.90
5	$1.83 < x \le 2.76$	0.2	1.0	4.65

・ 日 ・ ・ 理 ・ ・ 用 ・ ・ 日 ・ うへぐ

くして 山田 ・山田・山田・山口・山



Continuous Distributions without Closed-Form Inverse

- Some distributions do not have a closed form expressions for their CDF or its inverse, such as normal, gamma and beta distributions.
- If we are willing to approximate the inverse CDF, or numerically integrate, we can use the IT method for RV generation.
- A simple approximation, for instance, to the inverse CDF of the normal distribution is proposed by Schmeiser (1979).

$$X = F^{-1}(R) pprox rac{R^{0.135} - (1-R)^{0.135}}{0.1975}$$

 Systems Simulation Chapter 8: Random-Variate Generation
Linverse-Transform Technique
Continuous Distributions without Closed-Form Inverse

Normal Approximation

$$\Phi(x) \approx 1 - \phi(x)[b_1t + b_2t^2 + b_3t^4 + b_4t^4 + b_5t^5], \ x > 0$$

where

$$t = (1 + px)^{-1}$$

and

$$p = 0.2316419, b_1 = 0.31938, b_2 = -0.35656$$

$$b_3 = 1.78148, b_4 = -1.82125, b_5 = 1.33027$$

Systems Simulation Chapter 8: Random-Variate Generation

Discrete Distributions

An Empirical Discrete Distribution Example

The PMF and CDF are given as follows:

$$p(0) = P(X = 0) = 0.50$$

$$p(1) = P(X = 1) = 0.30$$

$$p(2) = P(X = 2) = 0.20$$

$$F(X) = \begin{cases} 0.0, & x \le 0 \\ 0.5, & 0 \le x < 1 \\ 0.8, & 1 \le x < 2 \\ 1.0, & x \ge 2 \end{cases}$$

Discrete Distributions

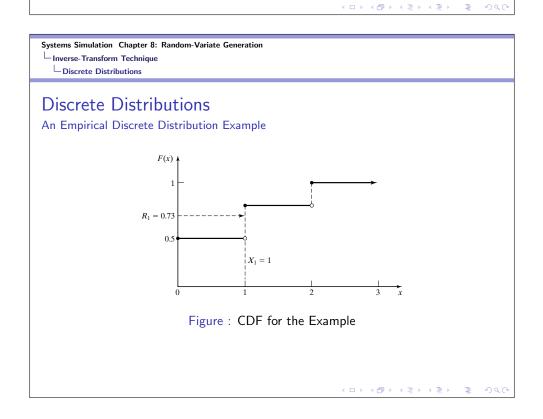
An Empirical Discrete Distribution Example

For generating discrete RVs, the IT technique becomes a table-lookup procedure in this example. For $R = R_1$, if

$$F(x_{i-1}) = r_{i-1} < R \le r_i = F(X_i)$$

then, set $X_1 = x_i$. We have the following generation scheme here:

$$X = \begin{cases} 0, & R \le 0.5 \\ 1, & 0.5 < R \le 0.8 \\ 2, & 0.8 < x \le 1.0 \end{cases}$$



Discrete Distributions

Discrete Uniform Distribution Example

The PMF and CDF are given as

$$p(x) = \frac{1}{k}, x = 1, 2, \dots, k$$

$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{1}{k}, & 1 \le x < 2 \\ \frac{2}{k}, & 2 \le x < 3 \\ \vdots, & \vdots \\ \frac{k-1}{k}, & k-1 \le x < k \\ 1, & k \le x \end{cases}$$

Systems Simulation Chapter 8: Random-Variate Generation

Discrete Distributions

Discrete Uniform Distribution Example

Using $F(x_{i-1}) = r_{i-1} < R \le r_i = F(X_i)$, we have the following.

$$r_{i-1} = \frac{i-1}{k} < R \le r_i = \frac{i}{k}$$

Solving it for i

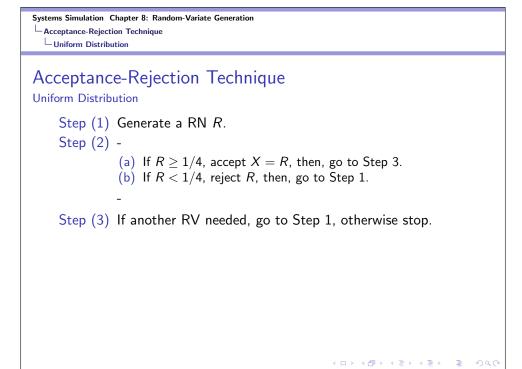
$$i - 1 < Rk < i \Rightarrow Rk \le i < Rk + 1$$

From the above inequality, we obtain

 $X = \lceil Rk \rceil$

・<・<・<・<・<・<・<・<・<・<・・・

・ロ・・聞・・聞・・日・



Systems Simulation Chapter 8: Random-Variate Generation Acceptance-Rejection Technique Poisson Distribution

Acceptance-Rejection Technique

Poisson Distribution

The PMF of a Poisson RV is

$$p(n) = P(N = n) = \frac{e^{-\alpha}\alpha^n}{n!}, n = 0, 1, 2, \dots$$

We can write

$$N = n \Leftrightarrow A_1 + A_2 + \ldots + A_n \le 1 < A_1 + A_2 + \ldots + A_n + A_{n+1}$$

Now, we let $A_i = (-1/\alpha) \ln R_i$ (the IT method for the ED)

Systems Simulation Chapter 8: Random-Variate Generation Acceptance-Rejection Technique Poisson Distribution

Acceptance-Rejection Technique

Poisson Distribution

Using the inequality in the previous slide, we obtain

$$\sum_{i=1}^{n} -\frac{1}{\alpha} \ln (R_i) \le 1 < \sum_{i=1}^{n+1} -\frac{1}{\alpha} \ln (R_i)$$
$$\ln \prod_{i=1}^{n} R_i = \sum_{i=1}^{n} \ln (R_i) \ge -\alpha > \sum_{i=1}^{n+1} \ln (R_i) = \ln \prod_{i=1}^{n+1} R_i$$
$$\prod_{i=1}^{n} R_i \ge e^{-\alpha} > \prod_{i=1}^{n+1} R_i$$

・ロ・・師・・声・・声・ ゆくぐ

Systems Simulation Chapter 8: Random-Variate Generation Acceptance-Rejection Technique Poisson Distribution

Acceptance-Rejection Technique

Poisson RV Generation Procedure

Step (1) Set n = 0, P = 1.

- Step (2) Generate a RN R_{n+1} , and replace P by PR_{n+1} .
- Step (3) If $P < e^{-\alpha}$, then, accept N = n; otherwise reject n, increase *n* by once, and go to step 2.

Systems Simulation Chapter 8: Random-Variate Generation
Cacceptance-Rejection Technique
Non-Stationary Poisson Process

Acceptance-Rejection Technique

Non-Stationary Poisson RV Generation Procedure

- Step (1) Let $\lambda^* = \max_{0 \le t \le T} \lambda(t)$ be the max of the arrival rate function and set t = 0 and i = 1.
- Step (2) Generate *E* from the exponential distribution with rate λ^* and let t = t + E (arrival time of the stationary Poisson process)
- Step (3) Generate RN R. If $R \le \lambda(t)/\lambda^*$, then, let $\tau_i = t$ and i = i + 1.
- Step (4) Go to step 2.

Systems Simulation Chapter 8: Random-Variate Generation Acceptance-Rejection Technique Gamma Distribution

Acceptance-Rejection Technique

Gamma RV Generation Procedure

Step (1) Compute $a = 1/(2/\beta - 1)^{1/2}, b = \beta - \ln 4$

- Step (2) Generate R_1 and R_2 . Set $V = R_1/(1 R_1)$
- Step (3) Compute $X = \beta V^a$.

Step (4) -

(a) If X > b + (βa + 1) ln (V) - ln (R₁²R₂), reject X and return to step 2.
(b) If X ≤ b + (βa + 1) ln (V) - ln (R₁²R₂), accept X.

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

・ロト・西ト・山下・ ・日・ うへの

Step (5) X has mean and variance both equal to β . If it is desired to have mean $1/\theta$ and variance $1/\beta\theta^2$, replace X by $X/(\beta\theta)$.

Systems Simulation Chapter 8: Random-Variate Generation

Special Properties

Direct Transformation for the Normal and Lognormal Distributions

Special Properties

Direct Transformation for the Normal and Lognormal Distributions

Consider two standard normal RVs, Z_1 and Z_2 , plotted as a point in the plane as shown in the figure on the next slide, and

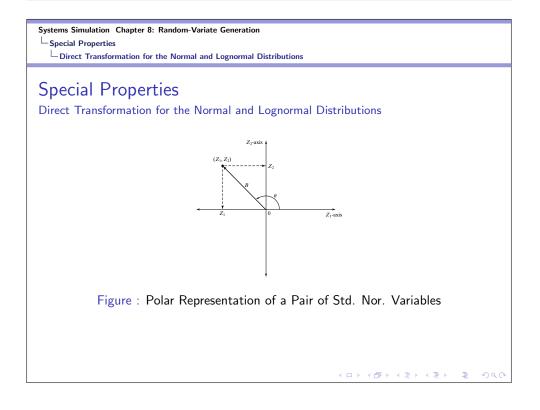
$$Z_1 = B \cos \theta$$
$$Z_2 = B \sin \theta$$

It is known that $B^2 = Z_1^2 + Z_2^2$ has a chi-square distribution with 2 degrees of freedom, which is equivalent to an ED with mean 2. So, we can write, $B = (-2 \ln R)^{1/2}$, and hence,

$$Z_1 = (-2 \ln R_1)^{1/2} \cos 2\pi R_2$$

$$Z_2 = (-2 \ln R_1)^{1/2} \sin 2\pi R_2$$

・ロ・・ 中・・ 中・・ 日・・ 日・



Special Properties

Convolution Method-Erlang Distribution

An Erlang RV X with parameters (k, θ) can be shown to be the sum of k independent exponential RVs, $X_i, i = 1, ..., k$ each with mean $1/k\theta$. The convolution approach is to generate $X_1, ..., X_k$, then, sum them to get X. Therefore,

$$X = \sum_{i=1}^{k} -\frac{1}{k\theta} \ln R_i$$
$$= -\frac{1}{k\theta} \ln \left(\prod_{i=1}^{k} R_i\right)$$

Systems Simulation Chapter 8: Random-Variate Generation

Special Properties

More Special Properties

Special Properties

More Special Properties-Beta Distribution

Assume that $X_1 \sim G(\beta_1, \theta_1 = 1/\beta_1)$ and $X_2 \sim G(\beta_2, \theta_2 = 1/\beta_2)$, and X_1 and X_2 are independent. Then,

$$Y = \frac{X_1}{X_1 + X_2}$$

has a beta distribution with β_1 and β_2 on the interval (0, 1). If we want Y to be defined on (a, b), then,

$$Y = a + (b - a) \left(\frac{X_1}{X_1 + X_2} \right)$$

ロ ・ ・ 酒 ・ ・ 直 ・ ・ 直 ・ の へ ()

Summary

- Reading HW: Chapter 8.
- Chapter 8 Exercises.

・ロ・・一部・・ヨ・・ヨ・ のへの