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L Introduction

Introduction
@ This chapter deals with procedures for sampling from a variety
of widely-used continuous and discrete distributions.

@ The purpose of the chapter is to explain and illustrate some
widely-used techniques for generating random variates.

@ The techniques mentioned here are the inverse-transform
technique, the acceptance-rejection technique.
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Introduction-cont.
Assumption

@ We assume that we have U[0,1] RVs Ry, Ra, ... where

fr(x) = { é:

?

0
Fr(x)=1¢ x
1

)

0<x<1
otherwise

x <0

0<x<1
x>1

Systems Simulation Chapter 8: Random-Variate Generation
L Inverse-Transform Technique

Inverse-Transform (IT) Technique

@ The IT technique can be used to sample from the exponential,
the uniform, the Weibull, the triangular distributions and from

empirical distributions.

@ It is also the underlying principle for sampling from a wide

variety of discrete distributions.

@ We will explain it for the exponential distribution and then

apply to the others.

@ Computationally, it is the most straightforward technique, but

not always the most efficient.
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L Exponential Distribution

I'T for the Exponential Distribution
The PDF and CDF of the exponential RV X are

e ™™ x>0
Fx) = { 0, otherwise

1- e‘AX, x>0
FOX) = { 0, otherwise

A can be interpreted as the mean number of occurrences per time
unit, and the mean of X is E(X;) = 1/\.

The IT can be utilized in principle for any distribution, but it is
most useful when the inverse of the CDF F(X), F~1 is easily
computed.
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L Exponential Distribution

IT for the Exponential Distribution-cont.
Step (1) Compute the CDF of the RV X.
For the ED, itis F(X) =1—e ™ ,x >0.
Step (2) Set F(X) = R on the range of X.

For the ED, it is 1 — e *X = R on the range x > 0.
Step (3) Solve the equation F(X) = R for X in terms of R.

1-e™ = R
e ™ = 1-R
-AX = In(1-R)

X = —ZIn(1-R) = X=F(R)
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LExponential Distribution

I'T for the Exponential Distribution-cont.
Step (4) Generate RNs Ry, Ry, ... and compute the RVs using
Xi = F_I(R,').
For the ED, it is

1

)\In(l—R):>X,-:—l|n(1—R,-)

X=FR)= X

Since both R; and 1 — R; are uniform, we can write

X,' = —; In (R,)
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LExponential Distribution

Exponential Distribution-cont.

Example

Table : Generation of ED-RVs with Mean 1

i 1 2 3 4 5
R; 0.1306 0.0422 0.6597 0.7965 0.7696
X; 0.1400 0.0431 1.0780 1.5920 1.4680
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IT for the Exponential Distribution-cont.

Fx)=1-¢*
1

F(xo)
Ri=1-e¢™

Ryf———- /

|

i

|

i

|

i

0 X, Xi=—tm(I-R) %

Figure : Graphical View of the IT Technique

DA
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I—Expcmential Distribution

Building on Exponential Distribution

Y =2 X~ CS(2v)
i=1

Y = 5ZX,- ~ gamma (a, )
i=1
_ Z?:l Xi

by ™ beta (a, b)

2 Xi

o F = £ Dar
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Uniform Distribution
Step (1) The CDF is given by

1
_J 5= asx<b
f(X)_{ 0, otherwise
0, x<a
F(X)=1 35, a<x<b
1, x>b

Step (2) Set F(X)=(X—a)/(b—a)=R
Step (3) Solve for X in terms of R to obtain X = a+ (b — a)R
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Weibull Distribution
Step (1) The CDF is given, when v =0, by

(g [ Bz
0, otherwise

F(X)=1—e &/ x>0

Step (2) Set F(X)=1—e /)’ =R
Step (3) Solve for X in terms of R to obtain
X =a[-In(1-R)Y"
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LTriangular Distribution

IT Example for the Triangular Distribution
Triangular Distribution (with end points (0, 2) and mode 1

X, 0<x<1
2—x, 1<x<?2

0, otherwise
0, x <0
X2

5 0<x<l1

_ 2 =
FX)= 1-0 1<x<2

1, x> 2
=] 5
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LTrianguIar Distribution

IT Example for the Triangular Distribution-cont.
Triangular Distribution (with end points (0, 2) and mode 1)

For0 < X <1,

and for 1 < X < 2,

2
Thus,
X_{ V2R, 0<R<3
“l2-V2(1-R), I<R<1
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\—Empirical Continuous Distributions

IT Example for Empirical Continuous Distributions

We have the following data: 2.76, 1.83, 1.80, 1.45, 1.24 The data
are arranged from smallest to largest. The smallest possible value
is assumed to be 0, so we define xg) = 0. Each interval has equal
probability of 1/n = 1/5. The slope of the ith line segment is

_ X0 T XG-y X6 T XG-
i/n—(i—1)/n 1/n
The inverse CDF, when (i —1)/n < R < i/n, is given by

aj

n

X = :E_l(R) = X(ji—1) T ai (R— - 1)
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LEmpirical Continuous Distributions

IT Example for Empirical Continuous Distributions-cont.

For example, for Ry = 0.71, we have

X1 =Xu-1)+ as <R1 — 4 - 1> =1.45+1.90(0.71 — 0.60) = 1.66

Interval Probability C.P.  Slope

I Xi—1) <X < X 1/n i/n a;

1 0.00<x<0.80 0.2 02 4.00

2 080<x<124 0.2 0.4 2.20

3 124<x<145 0.2 0.6 1.05

4 145 < x<1.83 0.2 08 190

5 1.83<x<276 0.2 1.0 465
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LEmpirix:al Continuous Distributions

I'T Example for Empirical Continuous Distributions-cont.

F(x)
(276,1.0)
1o~
osk (1.83,0.80)
=
Z R =07
Z
£
£ 06l (1.45,0.60)
g
u
g
g
E
E 04l (124,0.40)
o
021~ (0.80,020) X, = 145 + 1.90(0.71 - 0.60) = 1.66
0.0 4 I I I I I
0 05 10 5 20 25 30

X

Response times

Figure : CDF for the Example
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Continuous Distributions without Closed-Form Inverse

@ Some distributions do not have a closed form expressions for
their CDF or its inverse, such as normal, gamma and beta
distributions.

o If we are willing to approximate the inverse CDF, or
numerically integrate, we can use the IT method for RV
generation.

@ A simple approximation, for instance, to the inverse CDF of
the normal distribution is proposed by Schmeiser (1979).

R0.135 _ (1 _ R)0'135
X =FYR)~
(R) 0.1975
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LCom:inuous Distributions without Closed-Form Inverse

Normal Approximation

O(x) ~ 1 — ¢(x)[brt + bot® + bat* + bat* + bst®], x > 0

where

t=(1+px)?

and

p = 0.2316419, b; = 0.31938, b, = —0.35656

b3 = 1.78148, by = —1.82125, bs = 1.33027
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LDiscrete Distributions

Discrete Distributions

An Empirical Discrete Distribution Example

The PMF and CDF are given as follows:

p(0) = P(X =0)=0.50
p(1) = P(X =1)=0.30
p(2) = P(X=2)=0.20

0.0, x<0
05, 0<x«1
F(X) = 08, 1<x<?2

1.0, x>2
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Discrete Distributions

An Empirical Discrete Distribution Example

For generating discrete RVs, the IT technique becomes a
table-lookup procedure in this example. For R = Ry, if

F(X,'_l) =r_1<R<r= F(X,)
then, set X1 = x;. We have the following generation scheme here:

0, R<O05
X={1 05<R<08
2, 08<x<10
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LDiscrete Distributions

Discrete Distributions

An Empirical Discrete Distribution Example

F(x)
1 —
1
—
Ry =073F—=====~~~ >

0.5 0

Figure : CDF for the Example
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Discrete Distributions

Discrete Uniform Distribution Example

The PMF and CDF are given as

1
p(x):;,x:1,2,.. Lk
(0, x <1
2 1<x<2
%, 2<x<3
F(x) = i )
Ll k—1<x<k
L 1, k<x
=] 5 = E =
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LDiscrete Distributions

Discrete Distributions

Discrete Uniform Distribution Example
Using F(xj—1) = ri.1 < R < r; = F(X;), we have the following.
i—1 i

< p= _
P <R<r p

ri-1=
Solving it for i

i—1<Rk<i=Rk<i<RKk+1
From the above inequality, we obtain

X = [Rk]

u]

8
I
i
i
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Acceptance-Rejection Technique

Uniform Distribution

Step (1) Generate a RN R.
Step (2) -

(a) If R > 1/4, accept X = R, then, go to Step 3.
(b) If R < 1/4, reject R, then, go to Step 1.

Step (3) If another RV needed, go to Step 1, otherwise stop.
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LPcvisson Distribution

Acceptance-Rejection Technique

Poisson Distribution

The PMF of a Poisson RV is

-, n

p(n):P(N:n):e—laanzoalaza"'
n

We can write
N=ns Ai+A+.. +tA<1I<A+A+...+A + A

Now, we let A; = (—1/a)In R; (the IT method for the ED)
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LPuisscm Distribution

Acceptance-Rejection Technique

Poisson Distribution

Using the inequality in the previous slide, we obtain

n 1 n+1 1
——In(R;) <1 ——In(R;

Y —oh(R)<1< 32 in(R)

i=1 i=1
n n n+1 n+1

W[[R=> InR)=-a>> InR)=h]]R
i=1 i=1 i=1 i=1
n+1

f[ R >e @ > H R;
i=1 i=1
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LPcvisson Distribution

Acceptance-Rejection Technique
Poisson RV Generation Procedure
Step (1) Set n=0,P =1.
Step (2) Generate a RN R,41, and replace P by PR,;1.

Step (3) If P < e™?, then, accept N = n; otherwise reject n,
increase n by once, and go to step 2.
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LNcm-Stationary Poisson Process

Acceptance-Rejection Technique

Non-Stationary Poisson RV Generation Procedure
Step (1) Let A* = maxp<t<7 A(t) be the max of the arrival rate
function and set t =0 and / = 1.

Step (2) Generate E from the exponential distribution with rate
A* and let t = t + E (arrival time of the stationary
Poisson process)

Step (3) Generate RN R. If R < A(t)/\*, then, let 7; = t and
i=i+1.

Step (4) Go to step 2.
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LGammal Distribution

Acceptance-Rejection Technique
Gamma RV Generation Procedure
Step (1) Compute a=1/(2/3—1)"2,b=/3—1In4
Step (2) Generate Ry and R». Set V = R1/(1 — Ry)
Step (3) Compute X = V2.
Step (4) -
(a) F X > b+ (Ba+1)In(V)—In(R2R,), reject X and

return to step 2.
(b) f X < b+ (Ba+1)In(V)—In(R?Ry), accept X.

Step (5) X has mean and variance both equal to 8. If it is desired
to have mean 1/6 and variance 1/362, replace X by

X/(80).
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LDirect Transformation for the Normal and Lognormal Distributions

Special Properties

Direct Transformation for the Normal and Lognormal Distributions

Consider two standard normal RVs, Z; and Z5, plotted as a point
in the plane as shown in the figure on the next slide, and

Zi1 = Becost
Z> = Bsinf

It is known that B? = Z2 + Z2 has a chi-square distribution with 2
degrees of freedom, which is equivalent to an ED with mean 2. So,
we can write, B = (—2In R)Y/2, and hence,

Zi = (=2InRy)Y?cos2nR,
Z, = (=2InRy)Y?sin2nR,
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LDirect Transformation for the Normal and Lognormal Distributions

Special Properties

Direct Transformation for the Normal and Lognormal Distributions

Zy-axis

2,2y

Z

7z 0 Z,-axis

Figure : Polar Representation of a Pair of Std. Nor. Variables




Systems Simulation Chapter 8: Random-Variate Generation
LSpecial Properties
LCorlvolu'tion Method

Special Properties
Convolution Method-Erlang Distribution

An Erlang RV X with parameters (k, ) can be shown to be the
sum of k independent exponential RVs, X;,i =1,..., k each with
mean 1/k6. The convolution approach is to generate Xy, ..., Xk,
then, sum them to get X. Therefore,

G
X = Z—EmR,-
i=1

1 k
= —15 In (1;[1 R,-)
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Special Properties
More Special Properties-Beta Distribution

Assume that X; ~ G(ﬁl,el = 1/51) and Xp ~ G(ﬁg,ez = 1/52),
and Xj and X5 are independent. Then,

X1

y— "1
X1+ Xo

has a beta distribution with 31 and 32 on the interval (0,1). If we
want Y to be defined on (a, b), then,

X
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Summary

@ Reading HW: Chapter 8.

@ Chapter 8 Exercises.




