Systems Simulation Chapter 7: Random-Number Generation Systems Simulation Chapter 7: Random-Number Generation Fatih Cavdur fatihcavdur@uludag.edu.tr April 22, 2014

Systems Simulation Chapter 7: Random-Number Generation

Introduction

- Random Numbers (RNs) are a necessary basic ingredient in the simulation of almost all discrete systems.
- Most computer languages have a subroutine, object or function that generates a RN.
- Similarly, simulation languages generate RNs that are used to generate event times and other random variables.
- We will look at the generation of RNs and some randomness tests in this chapter. Next chapter will show how we can use them to generate RVs.

Properties of RNs

- A sequence of RNs, R_1, R_2, \ldots , must have two important statistical properties: uniformity and independence.
- Each RN, *R_i* must be an independent sample drawn from a continuous uniform distribution between 0 and 1.

$$f(r) = \begin{cases} 1, & 0 \le r \le 1\\ 0, & \text{otherwise} \end{cases}$$
$$E(R) = \int_0^1 r dr = \frac{1}{2}$$

$$V(R) = E(R^2) - [E(R)]^2 = \frac{1}{12}$$

Systems Simulation Chapter 7: Random-Number Generation

Properties of RNs

Some Consequences of Uniformity and Independence

- If the interval [0, 1] is divided into *n* classes (sub-intervals) of equal length, the expected number of observations in each interval is N/n, where *N* is the total number of observations.
- The probability of observing a value in a particular interval is independent of the previous values drawn.

Systems Simulation Chapter 7: Random-Number Generation └─ Generation of Pseudo-RNs

Generation of Pseudo-RNs

Problems and Errors

- Numbers might not be uniformly distributed.
- Numbers might be discrete-valued.
- The mean / variance of the generated numbers might be too high or too low.
- There might be dependence, such as,
 - autocorrelation
 - numbers successively higher or lower than adjacent numbers
 - several numbers above the mean followed several numbers below the mean

Systems Simulation Chapter 7: Random-Number Generation

Generation of Pseudo-RNs

Important Considerations

- The routine should be fast.
- The routine should be portable.
- The routine should have a sufficiently long cycle.
- The RNs should be replicable (repeatable).
- Most importantly, the generated RNs should closely approximate the ideal statistical properties of uniformity and independence.

Systems Simulation Chapter 7: Random-Number Generation — Techniques for RN Generation — Linear Congruential Method

Linear Congruential Method

• The linear congruential method (LCM) produces a sequence of integers, X_1, X_2, \ldots between 0 and m-1 by following a recursive relationship.

$$X_{i+1} = (aX_i + c) \mod m, \quad i = 0, 1, 2, \dots$$

 $R_i = \frac{X_i}{m}, \quad i = 1, 2, \dots$

- The initial value X₀ is called the seed, *a* is called the multiplier, *c* is the increment and *m* is the modulus.
- If c = 0, it is known as the multiplicative congruential method, and if c ≠ 0, it is called as the mixed congruential method.

Linear Congruential Method

Example

• Use the LGM to generate a sequence of RNs with $X_0 = 27, a = 17, c = 43$ and m = 100.

$$X_0 = 27$$

$$X_1 = (17 \times 27 + 43) \mod 100 = 2 \Rightarrow R_1 = \frac{2}{100} = 0.02$$

$$X_2 = (17 \times 2 + 43) \mod 100 = 77 \Rightarrow R_2 = \frac{77}{100} = 0.77$$

$$X_3 = (17 \times 77 + 43) \mod 100 = 52 \Rightarrow R_3 = \frac{52}{100} = 0.52$$

Systems Simulation Chapter 7: Random-Number Generation Lechniques for RN Generation Linear Congruential Method

Linear Congruential Method

Properties to Consider

- Generated numbers must be approximately uniform and independent.
- Moreover, other properties, such as *maximum density* and *maximum period* must be considered.
- By maximum density is meant that the values assumed by $R_i, i = 1, 2, ...,$ leave no large gaps on [0, 1].
- In many simulation languages, values such as $m = 2^{31} 1$ and $m = 2^{48}$ are in common use in generators.
- To help achieve maximum density and to avoid cycling, the generator should have the largest possible period.

Systems Simulation Chapter 7: Random-Number Generation

Linear Congruential Method

Linear Congruential Method

Properties to Consider

- For m a power of 2, say m = 2^b, and c ≠ 0, the longest possible period is P = m = 2^b, which is achieved whenever c is relatively prime to m (the greatest common factor of c and m is 1) and a = 1 + 4k, where k is an integer.
- For m a power of 2, say m = 2^b, and c = 0, the longest possible period is P = m/4 = 2^{b-2}, which is achieved if the seed X₀ is odd and if the multiplier a, is given by a = 3 + 8k or a = 5 + 8k, for some k = 0, 1,
- For m a prime number and c = 0, the longest possible period is P = m 1, which is achieved whenever the multiplier, a, has the property that the smallest integer k such that a^k 1 is divisible by m is k = m 1.

Linear Congruential Method

Properties to Consider-Example 1

Using the multiplicative LCM, find the period of the generator for a = 13, $m = 2^6 = 64$ and $X_0 = 1, 2, 3, 4$. When the seed is 1 or 3, the sequence has a period of 16. Period lengths of 8 and 4 is achieved when the seed is 2 and 4, respectively. In this example, $m = 2^6 = 64$ and c = 0. The max period is then P = m/4 = 16.

Table :	Periods	for	Various	Seeds
---------	---------	-----	---------	-------

i	Xi	Xi	Xi	Xi
0	1	2	3	4
1	13	26	39	52
2	41	18	59	36
3	21	42	63	20
4	17	34	51	4
5	29	58	23	52
6	57	50	43	36
7	37	10	47	20
8	33	2	35	4

Systems Simulation Chapter 7: Random-Number Generation

Linear Congruential Method

Linear Congruential Method

Properties to Consider-Example 2

With $a = 13 = 1 + 4 \times k = 1 + 4 \times 3$, c = 3 is relatively prime to m = 16 and $X_0 = 1$, we have the following sequence with the max period of $P = m = 2^b = 2^4 = 16$:

Table : Max Period

i	Xi	i	Xi
1	0	9	8
2	3	10	11
3	10	11	2
4	5	12	13
5	4	13	12
6	7	14	15
7	14	15	6
8	9	16	1

Systems Simulation Chapter 7: Random-Number Generation — Techniques for RN Generation — Linear Congruential Method

Linear Congruential Method

Properties to Consider-Example 3

With a = 3, c = 0, prime number m = 17 and $X_0 = 1$, we have the following sequence with the max period of P = m - 1 = 16when k = 16 is the smallest integer such that $a^k - 1 = 3^{16} - 1$ (which equals to 43,046,720) is divisible by k = m - 1 = 16 (verify that for k < 16, $a^k - 1$ is not divisible by k = m - 1):

i	Xi	i	Xi
1	3	9	14
2	9	10	8
3	10	11	7
4	13	12	4
5	5	13	12
6	15	14	2
7	11	15	6
8	16	16	1

Systems Simulation Chapter 7: Random-Number Generation

Combined Linear Congruential Method

Combined Linear Congruential Generators

- A RNG with a period of $2^{31} 1 \approx 2 \times 10^9$ is no longer adequate due to the increasing complexity. So, combine two or more multiplicative congruential generators in such a way that the combined generator has good statistical properties and a longer period.
- If $W_{i1}, W_{i2}, \ldots, W_{ik}$ are any independent, discrete-valued RVs (not necessarily identically distributed), but one of them, say W_{i1} , is uniform on the integers from 0 to $m_1 2$, then, the following is uniform on the integers from 0 to $m_1 2$.

$$W_i = \left(\sum_{j=1}^k W_{ij}
ight) \mod m_1 - 1$$

Combined Linear Congruential Method

Combined Linear Congruential Generators

• Let $X_{i1}, X_{i2}, \dots X_{ik}$ be the *i*th output from *k* different multiplicative congruential generators.

$$X_i = \left(\sum_{j=1}^k (-1)^{j-1} X_{ij}
ight) \mod m_1 - 1$$
 $R_i = \left\{egin{array}{c} rac{X_i}{m_1}, & X_i > 0 \ rac{m_1 - 1}{m_1}, & X_i = 0 \end{array}
ight.$

• The maximum period is given by $P = \frac{(m_1-1)(m_2-1)\dots(m_k-1)}{2^{k-1}}$

Systems Simulation Chapter 7: Random-Number Generation \square Techniques for RN Generation

Combined Linear Congruential Method

Combined Linear Congruential Generators

Algorithm by L'Ecuyer (1998)

Step (1) Select seed $X_{1,0}$ in the range [1, 2, 147, 483, 562] for the first generator, and seed $X_{2,0}$ in the range [1, 2, 147, 483, 398] for the second. Set j = 0.

Step (2) Evaluate each individual generator.

$$X_{1,j+1} = 40,014X_{1,j} \mod 2,147,483,563$$

 $X_{2,j+1} = 40,692X_{2,j} \mod 2,147,483,399$

Step (3) Set

 $X_{j+1} = (X_{1,j+1} - X_{2,j+1}) \mod 2,147,483,562$

Systems Simulation Chapter 7: Random-Number Generation — Techniques for RN Generation — Combined Linear Congruential Method

Combined Linear Congruential Generators Algorithm by L'Ecuyer (1998)

Step (4) Return

$$R_{j+1} = \begin{cases} \frac{X_{j+1}}{2,147,483,563}, & X_{j+1} > 0\\ \frac{2,147,483,562}{2,147,483,563}, & X_{j+1} = 0 \end{cases}$$

Step (5) Set j = j + 1 and go to step 2.

Systems Simulation Chapter 7: Random-Number Generation

RN Streams

- The seed for a LCG is the integer value X₀ that initializes the RN sequence.
- Any value in the sequence X_0, X_1, \ldots, X_P could be used to "seed" the generator.
- A RN *stream* is a convenient way to refer to a starting seed taken from the sequence.
- Typically these starting seeds are far apart in the sequence. If the streams are b values apart, then, stream i could be defined by starting seed S_i = X_{b(i-1)}, for i = 1, 2, ..., [P/b].
- Values of b = 100,000 were common in older generators, but values as large as $b = 10^{37}$ are in use in modern combined LCGs.

Tests for RNs

- To check on whether the desirable properties of uniformity and independence, a number of tests can be performed.
- The tests can be placed in two categories, according to the properties of interest: uniformity and independence.
- Frequency Test: Uses the Kolmogorov-Smirnov or the chi-square test o compare the distribution of the set of numbers generated to a uniform distribution.
- Autocorrelation Test: Tests the correlation between numbers and compares the sample compares the sample correlation to the expected correlation, zero.

Systems Simulation Chapter 7: Random-Number Generation

Tests for RNs

• In testing for uniformity, the hypotheses are as follows:

$$H_0$$
 : $R_i \sim U[0,1]$
 H_1 : $R_i \approx U[0,1]$

• In testing for uniformity, the hypotheses are as follows:

 H_0 : $R_i \sim$ independently H_1 : $R_i \sim$ independently

Frequency Tests

Kolmogorov-Smirnov (K-S) Test

• This test compared the continuous CDF, F(x), of the uniform distribution with the empirical CDF, $S_N(x)$. We have

$$F(x) = x, \quad 0 \le x \le 1$$

- The empirical CDF $S_N(x)$ defined by $S_N(x) = \frac{\text{number of } R_1, R_2, \dots, R_N \text{ which are } \leq x}{N}$
- K-S test is based on the largest absolute deviation between $D = \max |F(x) S_N(x)|$

Frequency Tests

K-S Test

- Step (3) Compute $D = \max(D^+, D^-)$
- Step (4) Locate in Table A.8 the critical value $D_{\alpha,N}$.
- Step (5) If $D > D_{\alpha,N}$, the null hypothesis is rejected. If $D \le D_{\alpha,N}$, conclude that no difference has been detected between the distributions.

Systems Simulation Chapter 7: Random-Number Generation

Frequency Tests

Frequency Tests

K-S Test Example

- Suppose that we have five numbers, 0.44, 0.81, 0.14, 0.05 and 0.93. Perform a test for uniformity using the K-S test with the significance level of $\alpha = 0.05$.
- We must first rank the numbers from smallest to largest. The calculations are seen in the table on the next slide.
- The computations for D^+ and D^- are shown as $i/N R_{(i)}$ and $R_{(i)} (i-1)/N$, respectively.
- We see that $D^+ = 0.26$, $D^- = 0.21$, D = 0.26 and $D_{\alpha,N} = 0.565$. Since $D < D_{\alpha,N}$, the hypothesis that the distribution is uniform distribution is not rejected.

Systems Simulation Chapter 7: Random-Numb Tests for RNs Frequency Tests	er Generation	1				
Frequency Tests						
K-S Test Example						
Table	: Calcula	tions fo	r K-S T	est		
$R_{(i)}$	0.05	0.14	0.44	0.81	0.93	
i/Ń	0.20	0.40	0.60	0.80	1.00	
$i/N-R_{(i)}$	0.15	0.26	0.16	-	0.07	
$R_{(i)} - (i-1)/N$	0.05	-	0.04	0.21	0.13	

Frequency Tests

Chi-Square (C-S) Test

• The C-S test uses the sample statistic

$$\chi_0^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

• *O_i* and *E_i* are the observed and expected number in class *i*. For equally spaced classes,

$$E_i = \frac{N}{n}$$

• It can be shown that χ_0^2 is approximately chi-squared distributed with n-1 degrees of freedom.

Systems Simulation Chapter 7: Random-Number Generation

Frequency Tests

Frequency Tests

C-S Test Example (Example 7.7 in DESS)

Considering the given data the following computations are done. Since $\chi^2_0 = 3.4 < \chi^2_{0.05,9} = 16.9$, the null hypothesis is not rejected.

Table :	Calculations	for	C-S	Test
---------	--------------	-----	-----	------

Interval	O_i	Ei	$O_i - E_i$	$(O_i - E_i)^2$	$\frac{(O_i - E_i)^2}{E_i}$
1	8	10	-2	4	0.4
2	8	10	-2	4	0.4
3	10	10	0	0	0.0
8	14	10	4	16	1.6
9	10	10	0	0	0.0
10	11	10	1	1	0.0
	100	100	0		3.4

Autocorrelation Tests

- The tests for autocorrelation are concerned with the dependence between numbers in a sequence.
- We will consider a test for autocorrelation. It requires the computation of autocorrelation between every *m* numbers (*m* is the lag), starting with the *i*th number.
- Thus, the autocorrelation ρ_{im} between the following numbers would be of interest: R_i, R_{i+m}, R_{i+2m}, ..., R_{i+(M+1)m}.
- The value *M* is largest integer st $i + (M+1)m \le N$, where *N* is the total number of values in the sequence. We have,

$$H_0 : \rho_{im} = 0$$
$$H_1 : \rho_{im} \neq 0$$

Systems Simulation Chapter 7: Random-Number Generation \square Tests for RNs

-Autocorrelation Tests

Autocorrelation Tests

• The distribution of the estimator $\hat{\rho}_{im}$ is approximately normal if the data are uncorrelated. We have the standard normal test statistic of Z_0 and do not reject H_0 if $-z_{\alpha/2} \leq Z_0 \leq z_{\alpha/2}$.

$$Z_{0} = \frac{\widehat{\rho}_{im}}{\sigma_{\widehat{\rho}_{im}}}$$
$$\widehat{\rho}_{im} = \frac{1}{M+1} \left(\sum_{k=0}^{M} [R_{i+km}] [R_{i+(k+1)m}] \right) - 0.25$$
$$\sigma_{\widehat{\rho}_{im}} = \frac{\sqrt{13M+7}}{12(M+1)}$$

Systems Simulation Chapter 7: Random-Number Generation — Tests for RNs — Autocorrelation Tests

Autocorrelation Tests

Autocorrelation Test Example (Example 7.8 in DESS)

Considering the data in the text, we test for whether the 3rd, 8th, 13th and so on, numbers are autocorrelated using $\alpha = 0.05$. Here, i = 3, m = 5, N = 30 and M = 4 (largest integer st $3 + (M + 1)5 \le 30$). Then,

$$\widehat{\rho}_{im} = \frac{1}{M+1} \left(\sum_{k=0}^{M} [R_{i+km}] [R_{i+(k+1)m}] \right) - 0.25$$

= $\frac{1}{4+1} (.23(.28) + .28(.33) + .33(.27) + .27(.05) + .05(.36)) - 0.25$
= -0.1945

Systems Simulation Chapter 7: Random-Number Generation
L Tests for RNs
L Autocorrelation Tests

Autocorrelation Tests

Autocorrelation Test Example (Example 7.8 in DESS)

$$\sigma_{\widehat{\rho}_{im}} = \frac{\sqrt{13M+7}}{12(M+1)} = \frac{\sqrt{13(4)+7}}{12(4+1)} = 0.1280$$
$$Z_0 = \frac{\widehat{\rho}_{im}}{\sigma_{\widehat{\rho}_{im}}} = -\frac{0.1945}{0.1280} = -1.516$$

Since $-z_{0.025}=-1.96\leq Z_0\leq 1.96=z_{0.025},$ we cannot reject the null hypothesis.

Summary

- Reading HW: Chapter 7.
- Chapter 7 Exercises.