Systems Simulation Chapter 7: Random-Number Generation

Systems Simulation

Chapter 7: Random-Number Generation

Fatih Cavdur
fatihcavdur@uludag.edu.tr

April 22, 2014

Systems Simulation Chapter 7: Random-Number Generation
-Introduction

Introduction

- Random Numbers (RNs) are a necessary basic ingredient in the simulation of almost all discrete systems.
- Most computer languages have a subroutine, object or function that generates a RN.
- Similarly, simulation languages generate RNs that are used to generate event times and other random variables.
- We will look at the generation of RNs and some randomness tests in this chapter. Next chapter will show how we can use them to generate RV s.

Systems Simulation Chapter 7: Random-Number Generation
-Properties of RNs

Properties of RNs

- A sequence of RNs, R_{1}, R_{2}, \ldots, must have two important statistical properties: uniformity and independence.
- Each RN, R_{i} must be an independent sample drawn from a continuous uniform distribution between 0 and 1 .

$$
\begin{gathered}
f(r)= \begin{cases}1, & 0 \leq r \leq 1 \\
0, & \text { otherwise }\end{cases} \\
E(R)=\int_{0}^{1} r d r=\frac{1}{2} \\
V(R)=E\left(R^{2}\right)-[E(R)]^{2}=\frac{1}{12}
\end{gathered}
$$

Systems Simulation Chapter 7: Random-Number Generation
-Properties of RNs

Properties of RNs

Some Consequences of Uniformity and Independence

- If the interval $[0,1]$ is divided into n classes (sub-intervals) of equal length, the expected number of observations in each interval is N / n, where N is the total number of observations.
- The probability of observing a value in a particular interval is independent of the previous values drawn.

Systems Simulation Chapter 7: Random-Number Generation
-Generation of Pseudo-RNs

Generation of Pseudo-RNs

Problems and Errors

- Numbers might not be uniformly distributed.
- Numbers might be discrete-valued.
- The mean / variance of the generated numbers might be too high or too low.
- There might be dependence, such as,
- autocorrelation
- numbers successively higher or lower than adjacent numbers
- several numbers above the mean followed several numbers below the mean

Systems Simulation Chapter 7: Random-Number Generation
$L_{\text {Generation of Pseudo-RNs }}$

Generation of Pseudo-RNs

Important Considerations

- The routine should be fast
- The routine should be portable.
- The routine should have a sufficiently long cycle.
- The RNs should be replicable (repeatable).
- Most importantly, the generated RNs should closely approximate the ideal statistical properties of uniformity and independence.

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation
$L_{\text {Linear Congruential Method }}$

Linear Congruential Method

- The linear congruential method (LCM) produces a sequence of integers, X_{1}, X_{2}, \ldots between 0 and $m-1$ by following a recursive relationship.

$$
\begin{gathered}
X_{i+1}=\left(a X_{i}+c\right) \quad \bmod m, \quad i=0,1,2, \ldots \\
R_{i}=\frac{X_{i}}{m}, \quad i=1,2, \ldots
\end{gathered}
$$

- The initial value X_{0} is called the seed, a is called the multiplier, c is the increment and m is the modulus.
- If $c=0$, it is known as the multiplicative congruential method, and if $c \neq 0$, it is called as the mixed congruential method.

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation

- Linear Congruential Method

Linear Congruential Method

Example

- Use the LGM to generate a sequence of RNs with $X_{0}=27, a=17, c=43$ and $m=100$.
$X_{0}=27$
$X_{1}=(17 \times 27+43) \bmod 100=2 \Rightarrow R_{1}=\frac{2}{100}=0.02$
$X_{2}=(17 \times 2+43) \bmod 100=77 \Rightarrow R_{2}=\frac{77}{100}=0.77$
$x_{3}=(17 \times 77+43) \bmod 100=52 \Rightarrow R_{3}=\frac{52}{100}=0.52$

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation
$L_{\text {Linear Congruential Method }}$

Linear Congruential Method

Properties to Consider

- Generated numbers must be approximately uniform and independent.
- Moreover, other properties, such as maximum density and maximum period must be considered.
- By maximum density is meant that the values assumed by $R_{i}, i=1,2, \ldots$, leave no large gaps on $[0,1]$.
- In many simulation languages, values such as $m=2^{31}-1$ and $m=2^{48}$ are in common use in generators.
- To help achieve maximum density and to avoid cycling, the generator should have the largest possible period.

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation

- Linear Congruential Method

Linear Congruential Method

Properties to Consider
(1) For m a power of 2 , say $m=2^{b}$, and $c \neq 0$, the longest possible period is $P=m=2^{b}$, which is achieved whenever c is relatively prime to m (the greatest common factor of c and m is 1) and $a=1+4 k$, where k is an integer.
(2) For m a power of 2 , say $m=2^{b}$, and $c=0$, the longest possible period is $P=m / 4=2^{b-2}$, which is achieved if the seed X_{0} is odd and if the multiplier a, is given by $a=3+8 k$ or $a=5+8 k$, for some $k=0,1, \ldots$.
(3) For m a prime number and $c=0$, the longest possible period is $P=m-1$, which is achieved whenever the multiplier, a, has the property that the smallest integer k such that $a^{k}-1$ is divisible by m is $k=m-1$.

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation
\square Linear Congruential Method

Linear Congruential Method

Properties to Consider-Example 1
Using the multiplicative LCM, find the period of the generator for $a=13, m=2^{6}=64$ and $X_{0}=1,2,3,4$. When the seed is 1 or 3 , the sequence has a period of 16 . Period lengths of 8 and 4 is achieved when the seed is 2 and 4 , respectively. In this example, $m=2^{6}=64$ and $c=0$. The max period is then $P=m / 4=16$.

Table: Periods for Various Seeds

i	X_{i}	X_{i}	X_{i}	X_{i}
0	1	2	3	4
1	13	26	39	52
2	41	18	59	36
3	21	42	63	20
4	17	34	51	4
5	29	58	23	52
6	57	50	43	36
7	37	10	47	20
8	33	2	35	4

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation

- Linear Congruential Method

Linear Congruential Method

Properties to Consider-Example 2
With $a=13=1+4 \times k=1+4 \times 3, c=3$ is relatively prime to $m=16$ and $X_{0}=1$, we have the following sequence with the \max period of $P=m=2^{b}=2^{4}=16$:

Table: Max Period

i	X_{i}	i	X_{i}
1	0	9	8
2	3	10	11
3	10	11	2
4	5	12	13
5	4	13	12
6	7	14	15
7	14	15	6
8	9	16	1

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation
Linear Congruential Method

Linear Congruential Method

Properties to Consider-Example 3
With $a=3, c=0$, prime number $m=17$ and $X_{0}=1$, we have the following sequence with the max period of $P=m-1=16$ when $k=16$ is the smallest integer such that $a^{k}-1=3^{16}-1$ (which equals to $43,046,720$) is divisible by $k=m-1=16$ (verify that for $k<16, a^{k}-1$ is not divisible by $k=m-1$):

Table: Max Period

i	X_{i}	i	X_{i}
1	3	9	14
2	9	10	8
3	10	11	7
4	13	12	4
5	5	13	12
6	15	14	2
7	11	15	6
8	16	16	1

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation
-Combined Linear Congruential Method

Combined Linear Congruential Generators

- A RNG with a period of $2^{31}-1 \approx 2 \times 10^{9}$ is no longer adequate due to the increasing complexity. So, combine two or more multiplicative congruential generators in such a way that the combined generator has good statistical properties and a longer period.
- If $W_{i 1}, W_{i 2}, \ldots, W_{i k}$ are any independent, discrete-valued RVs (not necessarily identically distributed), but one of them, say $W_{i 1}$, is uniform on the integers from 0 to $m_{1}-2$, then, the following is uniform on the integers from 0 to $m_{1}-2$.

$$
W_{i}=\left(\sum_{j=1}^{k} W_{i j}\right) \quad \bmod m_{1}-1
$$

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation
L Combined Linear Congruential Method

Combined Linear Congruential Generators

- Let $X_{i 1}, X_{i 2}, \ldots X_{i k}$ be the i th output from k different multiplicative congruential generators.

$$
\begin{gathered}
X_{i}=\left(\sum_{j=1}^{k}(-1)^{j-1} X_{i j}\right) \quad \bmod m_{1}-1 \\
R_{i}= \begin{cases}\frac{X_{i}}{m_{1}}, & X_{i}>0 \\
\frac{m_{1}-1}{m_{1}}, & X_{i}=0\end{cases}
\end{gathered}
$$

- The maximum period is given by

$$
P=\frac{\left(m_{1}-1\right)\left(m_{2}-1\right) \ldots\left(m_{k}-1\right)}{2^{k-1}}
$$

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation

- Combined Linear Congruential Method

Combined Linear Congruential Generators

Algorithm by L'Ecuyer (1998)
Step (1) Select seed $X_{1,0}$ in the range [1, 2, 147, 483, 562] for the first generator, and seed $X_{2,0}$ in the range [1, 2, 147, 483, 398] for the second. Set $j=0$.
Step (2) Evaluate each individual generator.

$$
\begin{aligned}
& X_{1, j+1}=40,014 X_{1, j} \bmod 2,147,483,563 \\
& X_{2, j+1}=40,692 X_{2, j} \bmod 2,147,483,399
\end{aligned}
$$

Step (3) Set

$$
X_{j+1}=\left(X_{1, j+1}-X_{2, j+1}\right) \quad \bmod 2,147,483,562
$$

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation
L Combined Linear Congruential Method

Combined Linear Congruential Generators

Algorithm by L'Ecuyer (1998)
Step (4) Return

$$
R_{j+1}= \begin{cases}\frac{X_{j+1}}{2,147,483,563}, & X_{j+1}>0 \\ \frac{2,14,433,562}{2,147,483,563}, & X_{j+1}=0\end{cases}
$$

Step (5) Set $j=j+1$ and go to step 2.

Systems Simulation Chapter 7: Random-Number Generation
-Techniques for RN Generation
L RN Streams

RN Streams

- The seed for a LCG is the integer value X_{0} that initializes the RN sequence.
- Any value in the sequence $X_{0}, X_{1}, \ldots, X_{P}$ could be used to "seed" the generator.
- A RN stream is a convenient way to refer to a starting seed taken from the sequence.
- Typically these starting seeds are far apart in the sequence. If the streams are b values apart, then, stream i could be defined by starting seed $S_{i}=X_{b(i-1)}$, for $i=1,2, \ldots,\lfloor P / b\rfloor$.
- Values of $b=100,000$ were common in older generators, but values as large as $b=10^{37}$ are in use in modern combined LCGs.

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs

Tests for RNs

- To check on whether the desirable properties of uniformity and independence, a number of tests can be performed.
- The tests can be placed in two categories, according to the properties of interest: uniformity and independence.
- Frequency Test: Uses the Kolmogorov-Smirnov or the chi-square test o compare the distribution of the set of numbers generated to a uniform distribution.
- Autocorrelation Test: Tests the correlation between numbers and compares the sample compares the sample correlation to the expected correlation, zero

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs

Tests for RNs

- In testing for uniformity, the hypotheses are as follows:

$$
\begin{array}{lll}
H_{0}: & R_{i} \sim U[0,1] \\
H_{1} & : & R_{i} \nsim U[0,1]
\end{array}
$$

- In testing for uniformity, the hypotheses are as follows:

$$
\begin{aligned}
& H_{0}: R_{i} \sim \text { independently } \\
& H_{1}: R_{i} \nsim \text { independently }
\end{aligned}
$$

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs
$\square_{\text {Frequency Tests }}$

Frequency Tests

Kolmogorov-Smirnov (K-S) Test

- This test compared the continuous CDF, $F(x)$, of the uniform distribution with the empirical CDF, $S_{N}(x)$. We have

$$
F(x)=x, \quad 0 \leq x \leq 1
$$

- The empirical CDF $S_{N}(x)$ defined by

$$
S_{N}(x)=\frac{\text { number of } R_{1}, R_{2}, \ldots, R_{N} \text { which are } \leq x}{N}
$$

- K-S test is based on the largest absolute deviation between

$$
D=\max \left|F(x)-S_{N}(x)\right|
$$

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs
$L_{\text {Frequency Tests }}$

Frequency Tests

K-S Test
Step (1) Rank the data from smallest to largest. Let $R_{(i)}$, denote the ith smallest observation.

Step (2) Compute

$$
\begin{aligned}
& D^{+}=\max \left\{\frac{i}{N}-R_{(i)}\right\} \\
& D^{-}=\max \left\{R_{(i)}-\frac{i-1}{N}\right\}
\end{aligned}
$$

Systems Simulation Chapter 7: Random-Number Generation

- Tests for RNs
$\square_{\text {Frequency Tests }}$

Frequency Tests

K-S Test
Step (3) Compute $D=\max \left(D^{+}, D^{-}\right)$
Step (4) Locate in Table A. 8 the critical value $D_{\alpha, N}$.
Step (5) If $D>D_{\alpha, N}$, the null hypothesis is rejected. If $D \leq D_{\alpha, N}$, conclude that no difference has been detected between the distributions.

Systems Simulation Chapter 7: Random-Number Generation
LTests for RNs
Frequency Tests

Frequency Tests

K-S Test Example

- Suppose that we have five numbers, $0.44,0.81,0.14,0.05$ and 0.93. Perform a test for uniformity using the K-S test with the significance level of $\alpha=0.05$.
- We must first rank the numbers from smallest to largest. The calculations are seen in the table on the next slide.
- The computations for D^{+}and D^{-}are shown as $i / N-R_{(i)}$ and $R_{(i)}-(i-1) / N$, respectively.
- We see that $D^{+}=0.26, D^{-}=0.21, D=0.26$ and $D_{\alpha, N}=0.565$. Since $D<D_{\alpha, N}$, the hypothesis that the distribution is uniform distribution is not rejected.

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs
Frequency Tests

Frequency Tests

K-S Test Example

Table: Calculations for K-S Test

$R_{(i)}$	0.05	0.14	0.44	0.81	0.93
i / N	0.20	0.40	0.60	0.80	1.00
$i / N-R_{(i)}$	0.15	0.26	0.16	-	0.07
$R_{(i)}-(i-1) / N$	0.05	-	0.04	0.21	0.13

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs

- Frequency Tests

Frequency Tests

K-S Test Example

Figure: Comparison of $F(x)$ and $S_{N}(x)$

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs
\square Frequency Tests

Frequency Tests

Chi-Square (C-S) Test

- The C-S test uses the sample statistic

$$
\chi_{0}^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

- O_{i} and E_{i} are the observed and expected number in class i.

For equally spaced classes,

$$
E_{i}=\frac{N}{n}
$$

- It can be shown that χ_{0}^{2} is approximately chi-squared distributed with $n-1$ degrees of freedom.

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs
$L_{\text {Frequency }}$ Tests

Frequency Tests

C-S Test Example (Example 7.7 in DESS)
Considering the given data the following computations are done. Since $\chi_{0}^{2}=3.4<\chi_{0.05,9}^{2}=16.9$, the null hypothesis is not rejected.

Table: Calculations for C-S Test

Interval	O_{i}	E_{i}	$O_{i}-E_{i}$	$\left(O_{i}-E_{i}\right)^{2}$	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
1	8	10	-2	4	0.4
2	8	10	-2	4	0.4
3	10	10	0	0	0.0
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
8	14	10	4	16	1.6
9	10	10	0	0	0.0
10	11	10	1	1	0.0
	100	100	0		3.4

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs
\square Autocorrelation Tests

Autocorrelation Tests

- The tests for autocorrelation are concerned with the dependence between numbers in a sequence.
- We will consider a test for autocorrelation. It requires the computation of autocorrelation between every m numbers (m is the lag), starting with the i th number.
- Thus, the autocorrelation $\rho_{i m}$ between the following numbers would be of interest: $R_{i}, R_{i+m}, R_{i+2 m}, \ldots, R_{i+(M+1) m}$.
- The value M is largest integer st $i+(M+1) m \leq N$, where N is the total number of values in the sequence. We have,

$$
\begin{aligned}
& H_{0}: \quad \rho_{i m}=0 \\
& H_{1}:
\end{aligned}
$$

Systems Simulation Chapter 7: Random-Number Generation

- Tests for RNs
- Autocorrelation Tests

Autocorrelation Tests

- The distribution of the estimator $\widehat{\rho}_{i m}$ is approximately normal if the data are uncorrelated. We have the standard normal test statistic of Z_{0} and do not reject H_{0} if $-z_{\alpha / 2} \leq Z_{0} \leq z_{\alpha / 2}$.

$$
\begin{gathered}
Z_{0}=\frac{\widehat{\rho}_{i m}}{\sigma_{\widehat{\rho}_{i m}}} \\
\widehat{\rho}_{i m}=\frac{1}{M+1}\left(\sum_{k=0}^{M}\left[R_{i+k m}\right]\left[R_{i+(k+1) m}\right]\right)-0.25 \\
\sigma_{\widehat{\rho}_{i m}}=\frac{\sqrt{13 M+7}}{12(M+1)}
\end{gathered}
$$

Systems Simulation Chapter 7: Random-Number Generation
-Tests for RNs
$\square_{\text {Autocorrelation Tests }}$

Autocorrelation Tests

Autocorrelation Test Example (Example 7.8 in DESS)
Considering the data in the text, we test for whether the 3rd, 8th, 13th and so on, numbers are autocorrelated using $\alpha=0.05$. Here,
$i=3, m=5, N=30$ and $M=4$ (largest integer st $3+(M+1) 5 \leq 30)$.
Then,

$$
\begin{aligned}
\widehat{\rho}_{i m} & =\frac{1}{M+1}\left(\sum_{k=0}^{M}\left[R_{i+k m}\right]\left[R_{i+(k+1) m}\right]\right)-0.25 \\
& =\frac{1}{4+1}(.23(.28)+.28(.33)+.33(.27)+.27(.05)+.05(.36))-0.25 \\
& =-0.1945
\end{aligned}
$$

Systems Simulation Chapter 7: Random-Number Generation

-Tests for RNs

- Autocorrelation Tests

Autocorrelation Tests

Autocorrelation Test Example (Example 7.8 in DESS)

$$
\begin{gathered}
\sigma_{\widehat{\rho}_{i m}}=\frac{\sqrt{13 M+7}}{12(M+1)}=\frac{\sqrt{13(4)+7}}{12(4+1)}=0.1280 \\
Z_{0}=\frac{\widehat{\rho}_{i m}}{\sigma_{\widehat{\rho}_{i m}}}=-\frac{0.1945}{0.1280}=-1.516
\end{gathered}
$$

Since $-z_{0.025}=-1.96 \leq Z_{0} \leq 1.96=z_{0.025}$, we cannot reject the null hypothesis.

Systems Simulation Chapter 7: Random-Number Generation
-Summary

Summary

- Reading HW: Chapter 7.
- Chapter 7 Exercises.

