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Introduction

Introduction

Random Numbers (RNs) are a necessary basic ingredient in
the simulation of almost all discrete systems.

Most computer languages have a subroutine, object or
function that generates a RN.

Similarly, simulation languages generate RNs that are used to
generate event times and other random variables.

We will look at the generation of RNs and some randomness
tests in this chapter. Next chapter will show how we can use
them to generate RVs.



Systems Simulation Chapter 7: Random-Number Generation

Properties of RNs

Properties of RNs

A sequence of RNs, R1,R2, . . ., must have two important
statistical properties: uniformity and independence.

Each RN, Ri must be an independent sample drawn from a
continuous uniform distribution between 0 and 1.

f (r) =

{
1, 0 ≤ r ≤ 1
0, otherwise

E (R) =

∫ 1

0
rdr =

1

2

V (R) = E (R2)− [E (R)]2 =
1

12

Systems Simulation Chapter 7: Random-Number Generation

Properties of RNs

Properties of RNs
Some Consequences of Uniformity and Independence

If the interval [0, 1] is divided into n classes (sub-intervals) of
equal length, the expected number of observations in each
interval is N/n, where N is the total number of observations.

The probability of observing a value in a particular interval is
independent of the previous values drawn.
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Generation of Pseudo-RNs
Problems and Errors

Numbers might not be uniformly distributed.

Numbers might be discrete-valued.

The mean / variance of the generated numbers might be too
high or too low.

There might be dependence, such as,

autocorrelation
numbers successively higher or lower than adjacent numbers
several numbers above the mean followed several numbers
below the mean
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Generation of Pseudo-RNs

Generation of Pseudo-RNs
Important Considerations

The routine should be fast.

The routine should be portable.

The routine should have a sufficiently long cycle.

The RNs should be replicable (repeatable).

Most importantly, the generated RNs should closely
approximate the ideal statistical properties of uniformity and
independence.
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Linear Congruential Method

Linear Congruential Method

The linear congruential method (LCM) produces a sequence
of integers, X1,X2, . . . between 0 and m − 1 by following a
recursive relationship.

Xi+1 = (aXi + c) mod m, i = 0, 1, 2, . . .

Ri =
Xi

m
, i = 1, 2, . . .

The initial value X0 is called the seed, a is called the
multiplier, c is the increment and m is the modulus.

If c = 0, it is known as the multiplicative congruential

method, and if c 6= 0, it is called as the mixed congruential

method.
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Techniques for RN Generation

Linear Congruential Method

Linear Congruential Method
Example

Use the LGM to generate a sequence of RNs with
X0 = 27, a = 17, c = 43 and m = 100.

X0 = 27

X1 = (17× 27 + 43) mod 100 = 2 ⇒ R1 =
2

100
= 0.02

X2 = (17× 2 + 43) mod 100 = 77 ⇒ R2 =
77

100
= 0.77

X3 = (17× 77 + 43) mod 100 = 52 ⇒ R3 =
52

100
= 0.52
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Techniques for RN Generation

Linear Congruential Method

Linear Congruential Method
Properties to Consider

Generated numbers must be approximately uniform and
independent.

Moreover, other properties, such as maximum density and
maximum period must be considered.

By maximum density is meant that the values assumed by
Ri , i = 1, 2, . . ., leave no large gaps on [0, 1].

In many simulation languages, values such as m = 231 − 1 and
m = 248 are in common use in generators.

To help achieve maximum density and to avoid cycling, the
generator should have the largest possible period.
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Linear Congruential Method

Linear Congruential Method
Properties to Consider

1 For m a power of 2, say m = 2b, and c 6= 0, the longest
possible period is P = m = 2b, which is achieved whenever c
is relatively prime to m (the greatest common factor of c and
m is 1) and a = 1 + 4k , where k is an integer.

2 For m a power of 2, say m = 2b, and c = 0, the longest
possible period is P = m/4 = 2b−2, which is achieved if the
seed X0 is odd and if the multiplier a, is given by a = 3 + 8k
or a = 5 + 8k , for some k = 0, 1, . . ..

3 For m a prime number and c = 0, the longest possible period
is P = m − 1, which is achieved whenever the multiplier, a,
has the property that the smallest integer k such that ak − 1
is divisible by m is k = m − 1.
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Techniques for RN Generation

Linear Congruential Method

Linear Congruential Method
Properties to Consider-Example 1

Using the multiplicative LCM, find the period of the generator for
a = 13,m = 26 = 64 and X0 = 1, 2, 3, 4. When the seed is 1 or 3,
the sequence has a period of 16. Period lengths of 8 and 4 is
achieved when the seed is 2 and 4, respectively. In this example,
m = 26 = 64 and c = 0. The max period is then P = m/4 = 16.

Table : Periods for Various Seeds

i Xi Xi Xi Xi

0 1 2 3 4
1 13 26 39 52
2 41 18 59 36
3 21 42 63 20
4 17 34 51 4
5 29 58 23 52
6 57 50 43 36
7 37 10 47 20
8 33 2 35 4
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Linear Congruential Method

Linear Congruential Method
Properties to Consider-Example 2

With a = 13 = 1 + 4× k = 1 + 4× 3 , c = 3 is relatively prime to
m = 16 and X0 = 1, we have the following sequence with the max
period of P = m = 2b = 24 = 16:

Table : Max Period

i Xi i Xi

1 0 9 8
2 3 10 11
3 10 11 2
4 5 12 13
5 4 13 12
6 7 14 15
7 14 15 6
8 9 16 1
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Techniques for RN Generation

Linear Congruential Method

Linear Congruential Method
Properties to Consider-Example 3

With a = 3 , c = 0, prime number m = 17 and X0 = 1, we have
the following sequence with the max period of P = m − 1 = 16
when k = 16 is the smallest integer such that ak − 1 = 316 − 1
(which equals to 43,046,720) is divisible by k = m − 1 = 16 (verify
that for k < 16, ak − 1 is not divisible by k = m − 1):

Table : Max Period

i Xi i Xi

1 3 9 14
2 9 10 8
3 10 11 7
4 13 12 4
5 5 13 12
6 15 14 2
7 11 15 6
8 16 16 1
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Combined Linear Congruential Generators

A RNG with a period of 231 − 1 ≈ 2× 109 is no longer
adequate due to the increasing complexity. So, combine two
or more multiplicative congruential generators in such a way
that the combined generator has good statistical properties
and a longer period.

If Wi1,Wi2, . . . ,Wik are any independent, discrete-valued RVs
(not necessarily identically distributed), but one of them, say
Wi1, is uniform on the integers from 0 to m1 − 2, then, the
following is uniform on the integers from 0 to m1 − 2.

Wi =




k∑

j=1

Wij


 mod m1 − 1
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Combined Linear Congruential Generators

Let Xi1,Xi2, . . .Xik be the ith output from k different
multiplicative congruential generators.

Xi =




k∑

j=1

(−1)j−1Xij


 mod m1 − 1

Ri =

{
Xi

m1
, Xi > 0

m1−1
m1

, Xi = 0

The maximum period is given by

P =
(m1 − 1)(m2 − 1) . . . (mk − 1)

2k−1
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Combined Linear Congruential Generators
Algorithm by L’Ecuyer (1998)

Step (1) Select seed X1,0 in the range [1, 2, 147, 483, 562] for the
first generator, and seed X2,0 in the range
[1, 2, 147, 483, 398] for the second. Set j = 0.

Step (2) Evaluate each individual generator.

X1,j+1 = 40, 014X1,j mod 2, 147, 483, 563

X2,j+1 = 40, 692X2,j mod 2, 147, 483, 399

Step (3) Set

Xj+1 = (X1,j+1 − X2,j+1) mod 2, 147, 483, 562
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Techniques for RN Generation

Combined Linear Congruential Method

Combined Linear Congruential Generators
Algorithm by L’Ecuyer (1998)

Step (4) Return

Rj+1 =

{
Xj+1

2,147,483,563 , Xj+1 > 0
2,147,483,562
2,147,483,563 , Xj+1 = 0

Step (5) Set j = j + 1 and go to step 2.
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RN Streams

RN Streams

The seed for a LCG is the integer value X0 that initializes the
RN sequence.

Any value in the sequence X0,X1, . . . ,XP could be used to
“seed” the generator.

A RN stream is a convenient way to refer to a starting seed
taken from the sequence.

Typically these starting seeds are far apart in the sequence. If
the streams are b values apart, then, stream i could be
defined by starting seed Si = Xb(i−1), for i = 1, 2, . . . , ⌊P/b⌋.
Values of b = 100, 000 were common in older generators, but
values as large as b = 1037 are in use in modern combined
LCGs.
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Tests for RNs

To check on whether the desirable properties of uniformity
and independence, a number of tests can be performed.

The tests can be placed in two categories, according to the
properties of interest: uniformity and independence.

Frequency Test: Uses the Kolmogorov-Smirnov or the
chi-square test o compare the distribution of the set of
numbers generated to a uniform distribution.

Autocorrelation Test: Tests the correlation between numbers
and compares the sample compares the sample correlation to
the expected correlation, zero.
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Tests for RNs

Tests for RNs

In testing for uniformity, the hypotheses are as follows:

H0 : Ri ∼ U[0, 1]

H1 : Ri ≁ U[0, 1]

In testing for uniformity, the hypotheses are as follows:

H0 : Ri ∼ independently

H1 : Ri ≁ independently
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Frequency Tests

Frequency Tests
Kolmogorov-Smirnov (K-S) Test

This test compared the continuous CDF, F (x), of the uniform
distribution with the empirical CDF, SN(x). We have

F (x) = x , 0 ≤ x ≤ 1

The empirical CDF SN(x) defined by

SN(x) =
number of R1,R2, . . . ,RN which are ≤ x

N

K-S test is based on the largest absolute deviation between

D = max |F (x)− SN(x)|
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Frequency Tests

Frequency Tests
K-S Test

Step (1) Rank the data from smallest to largest. Let R(i), denote
the ith smallest observation.

Step (2) Compute

D+ = max

{
i

N
− R(i)

}

D− = max

{
R(i) −

i − 1

N

}
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Tests for RNs

Frequency Tests

Frequency Tests
K-S Test

Step (3) Compute D = max (D+,D−)

Step (4) Locate in Table A.8 the critical value Dα,N .

Step (5) If D > Dα,N , the null hypothesis is rejected. If
D ≤ Dα,N , conclude that no difference has been detected
between the distributions.

Systems Simulation Chapter 7: Random-Number Generation

Tests for RNs

Frequency Tests

Frequency Tests
K-S Test Example

Suppose that we have five numbers, 0.44, 0.81, 0.14, 0.05 and
0.93. Perform a test for uniformity using the K-S test with the
significance level of α = 0.05.

We must first rank the numbers from smallest to largest. The
calculations are seen in the table on the next slide.

The computations for D+ and D− are shown as i/N − R(i)

and R(i) − (i − 1)/N, respectively.

We see that D+ = 0.26, D− = 0.21, D = 0.26 and
Dα,N = 0.565. Since D < Dα,N , the hypothesis that the
distribution is uniform distribution is not rejected.
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Frequency Tests

Frequency Tests
K-S Test Example

Table : Calculations for K-S Test

R(i) 0.05 0.14 0.44 0.81 0.93

i/N 0.20 0.40 0.60 0.80 1.00
i/N − R(i) 0.15 0.26 0.16 - 0.07

R(i) − (i − 1)/N 0.05 - 0.04 0.21 0.13
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Tests for RNs

Frequency Tests

Frequency Tests
K-S Test Example
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Figure : Comparison of F (x) and SN(x)
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Frequency Tests

Frequency Tests
Chi-Square (C-S) Test

The C-S test uses the sample statistic

χ2
0 =

n∑

i=1

(Oi − Ei )
2

Ei

Oi and Ei are the observed and expected number in class i .
For equally spaced classes,

Ei =
N

n

It can be shown that χ2
0 is approximately chi-squared

distributed with n − 1 degrees of freedom.
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Tests for RNs

Frequency Tests

Frequency Tests
C-S Test Example (Example 7.7 in DESS)

Considering the given data the following computations are done. Since
χ2
0 = 3.4 < χ2

0.05,9 = 16.9, the null hypothesis is not rejected.

Table : Calculations for C-S Test

Interval Oi Ei Oi − Ei (Oi − Ei )
2 (Oi−Ei )

2

Ei

1 8 10 -2 4 0.4
2 8 10 -2 4 0.4
3 10 10 0 0 0.0
... ... ... ... ... ...
8 14 10 4 16 1.6
9 10 10 0 0 0.0

10 11 10 1 1 0.0
100 100 0 3.4
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Autocorrelation Tests

The tests for autocorrelation are concerned with the
dependence between numbers in a sequence.

We will consider a test for autocorrelation. It requires the
computation of autocorrelation between every m numbers (m
is the lag), starting with the ith number.

Thus, the autocorrelation ρim between the following numbers
would be of interest: Ri ,Ri+m,Ri+2m, . . . ,Ri+(M+1)m.

The value M is largest integer st i + (M + 1)m ≤ N, where N

is the total number of values in the sequence. We have,

H0 : ρim = 0

H1 : ρim 6= 0

Systems Simulation Chapter 7: Random-Number Generation

Tests for RNs

Autocorrelation Tests

Autocorrelation Tests

The distribution of the estimator ρ̂im is approximately normal
if the data are uncorrelated. We have the standard normal
test statistic of Z0 and do not reject H0 if −zα/2 ≤ Z0 ≤ zα/2.

Z0 =
ρ̂im
σρ̂im

ρ̂im =
1

M + 1

(
M∑

k=0

[Ri+km]
[
Ri+(k+1)m

]
)

− 0.25

σρ̂im =

√
13M + 7

12(M + 1)
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Autocorrelation Tests

Autocorrelation Tests
Autocorrelation Test Example (Example 7.8 in DESS)

Considering the data in the text, we test for whether the 3rd, 8th, 13th
and so on, numbers are autocorrelated using α = 0.05. Here,
i = 3,m = 5,N = 30 and M = 4 (largest integer st 3 + (M + 1)5 ≤ 30).
Then,

ρ̂im =
1

M + 1

(
M∑

k=0

[Ri+km]
[
Ri+(k+1)m

]
)

− 0.25

=
1

4 + 1
(.23(.28) + .28(.33) + .33(.27) + .27(.05) + .05(.36))− 0.25

= −0.1945
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Autocorrelation Tests

Autocorrelation Tests
Autocorrelation Test Example (Example 7.8 in DESS)

σρ̂im
=

√
13M + 7

12(M + 1)
=

√
13(4) + 7

12(4 + 1)
= 0.1280

Z0 =
ρ̂im
σρ̂im

= −0.1945

0.1280
= −1.516

Since −z0.025 = −1.96 ≤ Z0 ≤ 1.96 = z0.025, we cannot reject the null
hypothesis.
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Summary

Reading HW: Chapter 7.

Chapter 7 Exercises.


