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Introduction

Introduction

Simulation is often used in the analysis of queuing models.

A simple but typical model is the single-server queue system.

In this model, the term “customer” refers to any type of entity
that can be viewed as requesting “service” from a system.

Some examples are production systems, repair and
maintenance facilities, communications and computer
systems, transport and material-handling systems etc.
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Introduction-cont.

Queuing models, whether solved analytically or through
simulation, provide the analyst with a powerful tool for
designing and evaluating the performance of queuing systems.

Typical measures of system performance are server utilization,
length of waiting lines and delays of customers.

Quite often, the analyst or the decision maker is involved in
tradeoffs between server utilization and customer satisfaction
in terms of line lengths and delays.
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Introduction-cont.

For relatively simple systems, these performance measures can
be computed mathematically - at great savings in time and
expense as compared with the use of a simulation model -
but, for for realistic models of complex systems, simulation is
usually required.

Nevertheless, analytically tractable models, although usually
requiring many simplifying assumptions, are valuable for
rough-cut estimates of system performance.

This chapter will discuss some of the well-known models.
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Characteristics of Queuing Systems

The key elements of queuing systems are the customers and
servers.

The term “customer” can refer to people, parts, trucks,
e-mails etc. and the term “server” clerks, mechanics,
repairmen, CPUs etc.

Although the terminology employed will be that of a customer
arriving to a server, sometimes the server moves to the
customer; for example a repairman moving to a broken
machine.
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Characteristics of Queuing Systems-cont.

Table : Examples of Queuing Systems

System Customers Servers
Reception Desk People Receptionist
Repair Facility Machines Repairman
Garage Trucks Mechanic
Hospital Patients Nurses
Grocery Shoppers Checkout Station
Laundry Dirty Linen Washing Machines / Dryers
Job Shop Jobs Machines, Workers
Computer Jobs CPU, Disk, CDs
Telephone Calls Exchange
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The Calling Population

The population of potential customers, referred to as the
calling population, may be assumed to be finite or infinite.

In systems with large population of potential customers, the
calling population is usually assumed to be infinite.

The main difference between finite and infinite population
models is how the arrival rate is defined. In an infinite
population model, the arrival rate is not affected by the
number of customers who left the calling population and
joined the queuing system.
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System Capacity

In many queuing systems, there is a limit to the number of
customers that may be in the waiting line or system, such as
an automatic car wash.

In such systems, an arriving customer who finds the system
full does not enter and returns to the calling population.

Some systems may be considered as having unlimited
capacity, such as concert ticket sales for students.

In limited-capacity systems, there is a distinction between the
arrival rate and the effective arrival rate.
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The Arrival Process

The arrival process for infinite-population models is usually
characterized in terms of inter-arrival times of successive
customers.

Arrivals may occur at scheduled times of at random times.

The most important model for random arrivals is the Poisson
arrival process. If An represents the inter-arrival time between
customer n − 1 and customer n, then, for a Poisson arrival
process, An is exponentially distributed with mean 1/λ where
the arrival rate of the process is λ customers per time unit,
and the number of arrivals in a time interval of length t, say
N(t), has the Poisson distribution with mean λt customers.
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The Arrival Process
Memoryless Property of Exponential Distribution

If X is an exponentially distributed random variable, we can write

P{X > t + h|x > t} = P{X > h}

P{X > t + h|x > t} =
P{X > t + h,X > t}

P{X > t}

=

∫∞
t+h λe

−λxdx∫∞
h λe−λxdx

=
e−λ(t+h)

e−λt

= e−λh = P{X > h}
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The Arrival Process-cont.
Exponential Distribution & Poisson Process

Exponential Distribution:

f (x) = λe−λx ; x ≥ 0

E (x) =
1

λ
and V (x) =

1

λ2

Poisson Process:

p(x) =
e−λλx

x!
; x ≥ 0

E (x) = λ and V (x) = λ

Systems Simulation Chapter 6: Queuing Models

Characteristics of Queuing Systems

The Arrival Process-cont.
Exponential Distribution & Poisson Process

Example: The number of orders per hour follows a Poisson
distribution with an average of 30.

Find the probability that there are exactly 60 orders between
10 PM and 12 AM.

P{X = 60} =
e−λt(λt)x

x!
=

e−606060

60!
= 0.051

Find the mean and standard deviation of the number of orders
between 9 PM and 1 AM.

E (X ) = λt = 4× 30 = 120 and V (X ) =
√
120 = 10.95
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The Arrival Process-cont.
Exponential Distribution & Poisson Process

Find the probability that the time between two consecutive
orders is between 1 and 3 minutes.

Let X be the time in minutes between successive orders. The
mean number of orders per minute is exponential with rate 0.5.

P{1 ≤ X ≤ 3} =

∫ 3

1
λe−λxdx =

∫ 3

1
0.5e−0.5xdx = 0.38
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The Arrival Process-cont.

A second important class of arrivals is scheduled arrivals, such
as scheduled airline flight arrivals to an airport.

In this case, [An, n = 1, 2, . . .] could be either constant or
constant plus or minus a small random amount to represent
early or late arrivals.

A third situation occurs when at least one customer is
assumed to always be present in the queue, so that the server
is never idle because of a lack of customers.
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The Arrival Process-cont.

For finite-population models, the arrival process is
characterized in a completely different fashion.

Define a customer pending when that customer is outside the
queuing system and a member of the potential calling
population.

Define a runtime of a given customer as the length of time
from departure from the queuing system until that customer’s
next arrival to the queue.

One important application of finite-population models is the
machine-repair problem. Times to failure for a given class of
machine have been characterized by the exponential, the
Weibull and the gamma distributions.
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The Arrival Process-cont.

t
A

(3)
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(3)
1 = W

(3)
Q1 + S

(3)
1 A

(3)
2 W

(3)
2 = W

(3)
Q2 + S

(3)
2

First arrival
of patient 3

Second arrival
of patient 3

pending needs attention pending needs attention

Patient 3 Status:

Figure : Arrival Process for a Finite-Population Model
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Queue Behavior and Queue Discipline

Queue behavior refers to the actions of customers while in a
queue waiting for service to begin.

In some situations, customers may balk (leaving when queue
is too long), renege (leaving after waiting for a while when
queue is moving too slowly) or jockey (moving from one
queue to another).

Queue discipline refers to the logical ordering of customers in
a queue and determines which customer will be chosen for
service when a server becomes free. Some examples are FIFO,
LIFO, SIRO, SPT etc.
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Service Times and Service Mechanism

The service times of successive arrivals are denoted by
S1, S2, . . . They may be constant or of random duration.

In the latter case, {S1, S2, . . .} is usually characterized as a
sequence of independent and identically distributed (IID)
random variables. The exponential, Weibull, gamma,
lognormal and truncated normal distributions have all been
used successfully as models of service times.

A queuing system consists of a number of service centers and
interconnecting queues. Each service center consists of some
number of servers, c , working in parallel, such as single-server
(c = 1), multiple-server (1 < c < ∞) or unlimited servers
(c = ∞).
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Example 6.1

c 5 1
(cashier)

Service center 3

Service center 1

Queue 1

Service center 2

Queue 2

Arrivals Departures

c 5 `

(self-service)

c 5 3
(3 clerks)

Queue 3

Figure : Example 6.1: Discount Warehouse with Three Service Centers
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Example 6.1

Arrivals Departures
Server 2

Server 1

Server 3

Service center 2

Figure : Service Center 2, with c = 3 parallel servers
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Example 6.2

Queue 1

Machine 3

Sealer/
wrapper

Machine 2

Packer

Queue 3

Capacity 1000

Machine 1

Candy maker/
wrapper

Queue 2

Capacity 1000

Figure : Candy-Production Line
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Queuing Notation

Based on Kendall’s proposition, queuing systems can be
characterized as A/B/c/N/K , (Kendall-Lee Notation) where

A represents the inter-arrival-time distribution
B represents the service-time distribution
c represents the number of parallel servers
N represents the system capacity
K represents the size of the calling population
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Queuing Notation

Common symbols for A and B include M (exponential or
Markovian), D (constant or deterministic), Ek (Erlang of
order k), PH (phase-type), H (hyper-exponential), G
(arbitrary or general), and GI (general independent).

For example, M/M/1/∞/∞ indicates a single-server system
that has unlimited capacity and an infinite population of
potential arrivals, and inter-arrival and service times are
exponential. When N and K are infinite, they may be
dropped from the notation (i.e., M/M/1)

The tire cutting example in the text can be represented by
G/G/1/5/5.
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Queuing Notation-cont.

Table : Queuing Notation for Parallel Server Systems

Pn steady-state probability of having n customers in system
Pn(t) probability of having n customers in system at time t
λ arrival rate
λe effective arrival rate
µ service rate of one server
ρ server utilization
An inter-arrival time between customers n − 1 and n
Sn service time of the nth arriving customer
Wn total time spent in system by the nth arriving customer

WQ
n total time spent in queue by the nth arriving customers

L(t) the number of customers in system at time t
LQ (t) the number of customers in queue at time t
L long-run time-average number of customers in system
LQ long-run time-average number of customers in queue
w long-run average time spent in system per customer
wQ long-run average time spent in queue per customer
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Long-Run Measures of Performance of Queuing Systems
Primary Long-Run Measures of Performance of Queuing Systems

long-run time-average number of customers in system (L)

long-run time-average number of customers in queue (LQ)

long-run average time spent in system per customer (w)

long-run average time spent in queue per customer(wQ)

server utilization (ρ)
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Long-Run Measures of Performance of Queuing Systems

This section defines the major measures of performance for a
general G/G/c/N/K queuing system, discusses their
relationships and shows how they can be estimated from a
simulation run.

There are two types of estimators: (i) an ordinary sample
average, and (ii) a time-integrated (time-weighted) sample
average.
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Time-Average Number in System

Long-Run Measures of Performance of Queuing Systems
Time-Average Number in System L

Consider a queuing system over a period of time T , and let
L(t) denote the number of customers in the system at time t.

Let Ti denote the total time during [0,T ] in which the system
contained exactly i customers. The time-weighted-average
number in system is defined by

L̂ =
1

T

∞∑

i=0

iTi =
∞∑

i=0

i

(
Ti

T

)
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Time-Average Number in System

Long-Run Measures of Performance of Queuing Systems
Time-Average Number in System L

20

3

T 5 20

L(t)

t4 6 8 10 12 14 16 18

2

1
T1 T1

T0 T0

T1 T1

T2 T2

T3

Figure : Number in System, L(t) at time t
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Time-Average Number in System

Long-Run Measures of Performance of Queuing Systems
Time-Average Number in System L

For the example problem in the previous slide,
L̂ = [0(3) + 1(12) + 2(4) + 3(1)]/20 = 1.15 customers.

It can be seen that the total area under the function L(t) can
be decomposed into rectangles of height i and length Ti . It
follows that the total area is given by

∑∞
i=0 iTi =

∫ T
0 L(t)dt,

and hence,

L̂ =
1

T

∞∑

i=0

iTi =
1

T

∫ T

0
L(t)dt
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Time-Average Number in System

Long-Run Measures of Performance of Queuing Systems
Time-Average Number in System / Queue L

If we let L be the long-run time-average number in system,

lim
T→∞

L̂ = lim
T→∞

1

T

∫ T

0
L(t)dt = L

The above can be applied to any sub-system of a queuing
system. If we let LQ denote the number of customers in line,

L̂Q =
1

T

∞∑

i=0

iTQ
i =

1

T

∫ T

0
LQ(t)dt → LQ as T → ∞
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Time-Average Number in System

Long-Run Measures of Performance of Queuing Systems
Time-Average Number in Queue L

If the previous figure corresponds to a single-server queue-that
is a G/G/1/N/K queuing system (N ≥ 3,K ≥ 3). Then the
number of customers waiting in queue is given by LQ(t)

L̂Q(t) =

{
0 if L(t) = 0
L(t)− 1 if L(t) ≥ 1

It is shown in the next figure. Thus, TQ
0 = 5 + 10 = 15,

TQ
1 = 2 + 2 = 4 and TQ

2 = 1. Therefore,

L̂Q =
(0)(15) + (1)(4) + (2)(1)

20
= 0.3 customers
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Time-Average Number in System

Long-Run Measures of Performance of Queuing Systems
Time-Average Number in Queue L

20

3

T 5 20

LQ(t)

t4 6 8 10 12 14 16 18

2

1

Figure : Number in Queue, LQ(t) at time t
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Average Time Spent in System

Long-Run Measures of Performance of Queuing Systems
Average Time Spent in System per Customer w

If W1,W2, . . . ,Wn are the times each customer spends in
system during [0,T ], where N is the number of arrivals during
that time period, the average time spent in system per
customer (average system time) is

ŵ =
1

N

N∑

i=1

Wi

For stable systems, as N → ∞, ŵ → w . Also,

ŵQ =
1

N

N∑

i=1

WQ
i → as N → ∞
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Average Time Spent in System

Long-Run Measures of Performance of Queuing Systems
Average Time Spent in System per Customer w

For stable systems, as N → ∞, ŵ → w with probability 1,
where w is called the long-run average system time. Also,

ŵQ =
1

N

N∑

i=1

WQ
i → as N → ∞
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The Conservation Equation

Long-Run Measures of Performance of Queuing Systems
The Conservation Equation L = λw

For the example system considered previously, there were
N = 5 arrivals in T = 20 time units, and thus, the observed
arrival rate was λ̂ = N/T = 1/4 customers per time unit.
Recall that L̂ = 1.15 and ŵ = 4.6; hence, it follows that

L̂ = λ̂ŵ

This is not coincidence. So, if T → ∞ and N → ∞, the
above relationship becomes

L = λw
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization

Server utilization is defined as the proportion of time that a
server is busy. We have, the observed utilization, ρ̂, defined
over [0,T ], ρ̂ → ρ as T → ∞.

Server Utilization in G/G/1/∞/∞ Queues

Server Utilization in G/G/c/∞/∞ Queues
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization Example

From the figure in the next slide and the one we looked for
the previous example, and assuming a single server, the server
utilization is

ρ̂ =
total busy time

T
=

∑∞
i=1 Ti

T
=

T − T0

T
=

17

20
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization Example

20

3

T 5 20

L(t)

t4 6 8 10 12 14 16 18

2

1

W1

W3

W4

W3

W4

W4

W5W2

Figure : System Times, Wi for Single-Server FIFO Queuing System
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization in G/G/1/∞/∞ Queues

Let λ customers be the average arrival rate per time unit and
E (S) = 1/µ average service time (when busy, server is
working at the rate µ customers per time unit.

The server alone can be considered as a queuing system itself.
If we let λs be the average arrival rate to the server, we have,
λs = λ for stable systems. If λs < λ, then, the queue length
tend to increase at an average rate of λ− λs customers per
time unit.
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization in G/G/1/∞/∞ Queues

For the server sub-system, we have w = E (S) = µ−1 Hence,
the average number in system is

L̂s =
1

T

∫ T

0
[L(t)− LQ(t)]dt =

T − T0

T

In this case, L̂s = ρ̂. As T → ∞, L̂s = ρ̂ → Ls = ρ.
Combining this with L = λw , we have

ρ = λE (S) =
λ

µ
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization in G/G/1/∞/∞ Queues

That is, the long-run server utilization in a single-server queue
is equal to the average arrival rate divided by the average
service rate. We should have λ < µ or ρ = λ/µ < 1 for this
system to be stable.

For unstable systems (λ > µ), the long-run server utilization
is 1 and the long-run queue length is infinity.

For stable systems, the long-run performance measures, such
as queue length, number of customers in system, system time,
queue time, are well defined.
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization in G/G/c/∞/∞ Queues

The average number of busy servers is given by

Ls = λE (S) =
λ

µ
, 0 ≤ Ls ≤ c

The long run server utilization is

ρ =
Ls
c

=
λ

cµ
, 0 ≤ ρ ≤ 1

The system is stable iif λ < cµ.
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization in G/G/c/∞/∞ Queues

Customers arrive at random to a license bureau at a rate of
λ = 50 customers per hour. Currently, there are 20 clerks,
each serving µ = 5 customers per hour on the average. Here,
the long-run or steady-state average number of busy servers is

Ls =
λ

µ
=

50

5
= 10

We note that c > λ/µ. The long run server utilization is

ρ =
λ

cµ
=

50

(20)(5)
= 0.5
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization and System Performance

System performance can vary widely for a given utilization, ρ.

Consider a D/D/1 queue. We have all arrival times are equal
to E (A) = 1/λ, and all service times equal to E (S) = 1/µ.

By looking at the figure in the next slide, we see that by
varying λ and µ, we can obtain any utilization between 0 and
1, and yet, there are no waiting customers.

What causes the long queues if not a high server utilization?
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Server Utilization

Long-Run Measures of Performance of Queuing Systems
Server Utilization and System Performance

0 5l21

L(t)

t

2

1
m21

4l21

m21

3l21

m21

2l21

m21

l21

m21

Server utilization 5 r 5          5

m21

l21

l
m

Figure : D/D/1 Queue
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Costs in Queuing Problems

Cost in Queuing Problems

We can associate costs with various aspects of the queues and
servers. For example, if a cost occurs for each customer in
queue, say at a rate of $ 10 per hour per customer, then, if
customer j spends WQ

j hours in the queue,
∑N

j=1 (10W
Q
j ) is

the total cost of the N customers. Thus, the average cost per
customer is

N∑

j=1

10WQ
j

N
= 10ŵQ

We can proceed using this.
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Steady-State Behavior of Infinite-Population Markovian
Models

A queuing system is said to be in statistical equilibrium or
steady state, if the probability that the system is in a given
state is not time dependent-that is, P[L(t) = n] = Pn(t) = Pn

is independent of time t. For the simple models studied here,
the steady-state parameter L, the time-average number of
customers in the system, can be computed as

L =
∞∑

n=0

nPn

where [Pn] are the steady-state probabilities of finding n
customers in the system.
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Steady-State Behavior of Infinite-Population Markovian
Models

Once L is given, the other steady-state parameters can be
computed from Little’s equation applied to the whole system
and to the queue alone.

w =
L

λ

wQ = w − 1

µ

LQ = λwQ
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Single-Server Queues

Single-Server Queues (Poisson Arrivals & Infinite Capacity)

Table : Steady-State Parameters of the M/G/1 Queue

ρ λ
µ

L ρ+ λ2(1/µ2+σ2)
2(1−ρ) = ρ+ λ2(1+σ2µ2)

2(1−ρ)

w 1
µ + λ(1/µ2+σ2)

2(1−ρ)

wQ
λ(1/µ2+σ2)

2(1−ρ)

LQ
λ2(1/µ2+σ2)

2(1−ρ) = ρ2(1+σ2µ2)
2(1−ρ)

P0 1− ρ
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Single-Server Queues

Single-Server Queues (Poisson Arrivals & Infinite Capacity)
Example

There are two workers competing for a job; Able and Baker. Able
claims an average service time that is faster than Baker’s, but
Baker claims to be more consistent, even if not as fast. The
arrivals occur according to a Poisson process with a rate of λ = 2
per hour. Able’s statistics are an average service time of 24
minutes with a standard deviation of 20 minutes. Baker’s statistics
are an average service time of 25 minutes with a standard
deviation of 2 minutes. If the average queue length is the criterion
for hiring, which worker should be hired?
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Single-Server Queues

Single-Server Queues (Poisson Arrivals & Infinite Capacity)
Example

For Able,

LQ =
λ2(1/µ2 + σ2)

2(1− ρ)
=

(
1
30

)2
(242 + 400)

2
(
1− 4

5

) = 2.711 customers

For Baker,

LQ =
λ2(1/µ2 + σ2)

2(1− ρ)
=

(
1
30

)2
(252 + 4)

2
(
1− 5

6

) = 2.097 customers

Baker should be hired!
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Single-Server Queues

Single-Server Queues (Poisson Arrivals & Infinite Capacity)

Table : Steady-State Parameters of the M/M/1 Queue

L λ
µ−λ = ρ

1−ρ

w 1
µ−λ = 1

µ(1−ρ)

wQ
λ

µ(µ−λ) =
ρ

µ(1−ρ)

LQ
λ2

µ(µ−λ) =
ρ2

µ(1−ρ)

Pn

(
1− λ

µ

)(
λ
µ

)n
= (1− ρ)ρn
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Single-Server Queues

Single-Server Queues (Poisson Arrivals & Infinite Capacity)
Example

Assume that time between arrivals and service times at a
single-chair unisex hair-styling shop have been shown to be
exponentially distributed. The values of λ and µ are 2 per hour
and 3 per hour, respectively. Compute the server utilization and
the probabilities of having 0, 1, 2 and 3 or more customers in the
shop. The server utilization is

ρ =
λ

µ
=

2

3
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Single-Server Queues

Single-Server Queues (Poisson Arrivals & Infinite Capacity)
Example

The probabilities of having 0, 1, 2 and 3 or more customers

Pn =

(
1− λ

µ

)(
λ

µ

)n

⇒ P0 =

(
1− 2

3

)(
2

3

)0

=
1

3

P1 =

(
1− 2

3

)(
2

3

)1

=
2

9

P2 =

(
1− 2

3

)(
2

3

)2

=
4

27

P{n ≥ 3} = 1−
2∑

n=0

Pn =
8

27
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Single-Server Queues (Poisson Arrivals & Infinite Capacity)
Example

The number of customers in system, in queue and their waiting
times

L =
λ

µ− λ
= 2 customers

LQ =
λ2

µ(µ− λ)
=

4

3
customers

w =
1

µ− λ
= 1 hour =

L

λ

wQ =
λ

µ(µ− λ)
=

2

3
hour = w − E (S) = w − 1

µ
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Steady-State Behavior of Infinite-Population Markovian Models

Multi-Server Queues

Multi-Server Queues

Table : Steady-State Parameters of the M/M/c Queue

ρ λ
cµ

P0

{[∑c−1
n=0

(λ/µ)n

n!

]
+

[(
λ
µ

)c (
1
c!

) (
cµ

cµ−λ

)]}−1

P[L(∞) ≥ c] (λ/µ)cP0
c!(1−λ/cµ)

= (cp)cP0
c!(1−ρ)

L cρ+ (cρ)c+1P0

cc!(1−ρ)2

w L
λ

wQ w − 1
λ

LQ λwQ

L− LQ
λ
µ
= cρ
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Multi-Server Queues
Example

Assume Poisson arrivals with λ = 2 per minute and exponentially
distributed service times with mean 40 seconds. Since

λ

µ
=

2

3/2
=

4

3
> 1

the system is unstable. We need more servers to make it stable
(c > λ/µ). We can let c = 2. Then,
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Multi-Server Queues

Multi-Server Queues
Example

The probability that there are no customers in the system

P0 =

{[
c−1∑

n=0

(λ/µ)n

n!

]
+

[(
λ

µ

)c ( 1

c!

)(
cµ

cµ− λ

)]}−1

=

{[
1∑

n=0

(4/3)n

n!

]
+

[(
4

3

)2( 1

2!

)(
2× 3

2

2× 3
2 − 2

)]}−1

=

[
1 +

4

3
+

(
16

9

)(
1

2

)
(3)

]−1

=
1

5
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Multi-Server Queues
Example

The probability that all servers are busy

P{L(∞) ≥ 2} =
(λ/µ)cP0

c!(1− λ/cµ)

=
(4/3)2(1/5)

2!
[
1− 2

2(3/2)

]

=

(
8

3

)(
1

5

)

=
8

15
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Multi-Server Queues
Example

A grocery store operates with 3 check-out counters. The company
uses the following schedule to determine the number of counters in
operation based on the number of customers in the store:

# of customers # of counters
1 to 3 1
4 to 6 2

more than 6 3

Customers arrive in the counters area according to a Poisson
distribution with with a mean rate of 10 customers per hour and
the average check-out time per customer is exponential with mean
12 minutes. Determine the steady-state probability pn of n
customers in the system.
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Multi-Server Queues
Example

We let

λn = λ = 10 customers per hour , n = 0, 1, . . .

µn =





60/12 customers per hour, n = 0, 1, 2, 3
(2)(60)/12 customers per hour, n = 4, 5, 6
(3)(60)/12 customers per hour, n = 7, 8, . . .

Continue from here.
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Multi-Server Queues

Table : Steady-State Parameters of the M/G/∞ Queue

P0 e−λ/µ

w 1
µ

wQ 0

L λ
µ

LQ 0

Pn
e−λ/µ(λ/µ)n

n! , n = 0, 1, . . .
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Multi-Server Queues

Table : Steady-State Parameters of the M/M/c/N Queue

P0

[
1 +

∑c
n=1

an

n!
+ ac

c!

∑N
n=c+1 ρ

n−c
]−1

PN
aN

c!cN−c P0

LQ
P0a

cρ
c!(1−ρ)2

[
1− ρN−c − (N − c)ρN−c(1− ρ)

]

λe λ(1− PN)

wQ
LQ
λe

w wQ + 1
λ

L λew
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Birth and Death Processes

The number of people present in a queuing system at time t
is defined as the state of the system at time t.

Pij(t) is the probability that there are j people in the system
at time t given that there are i people at time 0.

πj is defined as the steady-state, long-term or equilibrium
probability of state j .

The behavior of Pij(t) is called as the transient behavior of
the queuing system.

A birth and death process (BDP) is a continuous time
stochastic process for which the system’s state at any time is
a non-negative integer.
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Birth and Death Processes-cont.
Laws of Motion for BDP

With probability λj∆t + o(∆t), a birth (arrival) occurs
between time t and time t +∆t. A birth increases the system
state by 1 to j + 1. The variable λj is called the birth (arrival)
rate in state j . In most queuing systems, a birth is an arrival.

With probability µj∆t + o(∆t), a death (departure) occurs
between time t and time t +∆t. A death decreases the
system state by 1 to j − 1. The variable µj is called the death
rate in state j . In most queuing systems, a death is a
departure or service completion.

Births and deaths are independent of each other.
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Birth and Death Processes-cont.
Derivation of Steady-State Probabilities for BDP

Table : Steady-State Probabilities for State being j

state state probability
(time t) (time t +∆t)

j − 1 j Pi,j−1(t)(λj−1∆t + o(∆t))

j + 1 j Pi,j+1(t)(µj+1∆t + o(∆t))

j j Pi,j(t)[1− λj∆t − µj∆t − 2o(∆t)]

∀i 6= j , j ± 1 j o(∆t)

lim
∆t→0

o(∆t)

∆t
= 0
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Birth and Death Processes-cont.
Derivation of Steady-State Probabilities for BDP

Pi,j(t +∆t) = Pi,j(t)

+ ∆t[λj−1Pi,j−1(t) + µj+1Pi,j+1(t)− Pij(t)µj − Pij(t)λj ]

+ o(∆t)[Pi,j−1(t) + Pi,j+1(t) + 1− 2Pij(t)]

Since the last row is equal to o(∆t),

Pi,j−1(t+∆t)−Pi,j(t) = ∆t[λj−1Pi,j−1(t)+µj+1Pi,j+1(t)−Pij(t)µj−Pij(t)λj ]+o(∆t)

By dividing the last expression by ∆t and letting ∆t → 0, for ∀i , j ,

P ′
ij(t) = λj−1Pi,j−1(t) + µj+1Pi,j+1(t)− Pij(t)µj − Pij(t)λj

j = 0 ⇒ Pi,j−1(t) = 0 and µj = 0 ⇒ P ′
i0(t) = µ1Pi,1(t)− λ0Pi,0(t)
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Birth and Death Processes-cont.
Derivation of Steady-State Probabilities for BDP

The last expression is an infinite system of differential
equations.

It is very difficult to solve these equations.

However, we can use the above expressions to obtain the
steady-state probabilities πj ’s (or Pj ’s).

Pj = πj = lim
t→∞

Pij(t)

For large t and any initial state i , we can thought of Pij(t) as
a constant, and we can assume P ′

ij(t) = 0.
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Birth and Death Processes-cont.
Derivation of Steady-State Probabilities for BDP

We can then write, for j = 1, 2, . . .,

λj−1Pj−1 + µj+1Pj+1 − λjPj − µjPj = 0

By organizing,

λj−1Pj−1 + µj+1Pj+1 = λjPj − µjPj = 0

For j = 0,
λ0P0 = µ1P1

We now have an infinite system of linear equations that can be
solved easily!
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Birth and Death Processes-cont.
Solution of BDP Equations

Pj =
λ0λ1 . . . λj−1

µ1µ2 . . . µj
P0

∞∑

j=1

Pj = 1 ⇒ P0


1 +

∞∑

j=1

λ0λ1 . . . λj−1

µ1µ2 . . . µj


 = 1

⇒ P0 =
1

1 +
∑∞

j=1
λ0λ1...λj−1

µ1µ2...µj
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Birth and Death Processes-cont.
Example

Indiana Bell customer service representatives receive 1,7000 calls
per hour. The time between calls follow an exponential
distribution. A customer service representative can handle an
average of 30 calls per hour. The time to handle a call is also
exponential. Indiana Bell can put up to 25 people on hold. If 25
people are on hold, a call is lost to the system. Indiana Bell has 75
representatives.

(a) What fraction of the time are all operators busy?

(b) What fraction of all calls are lost to the system?
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Birth and Death Processes-cont.
Example-cont.

We can use MS Excel to compute the desired probabilities. [Click]

(a) The fraction of time all operators are busy is∑100
j=75 Pj

∼= 0.013.

(b) The fraction of all calls that are lost to the system is
P100

∼= 0.0000028.
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Others

Others

More complicated models can be considered.

Finite Population Models
Networks of Queues
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Summary

Summary

Reading HW: Chapter 6.

Chapter 6 Exercises.


