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Introduction

Introduction

The world of the model-builder sees probabilistic rather than
deterministic.

There are many causes of variation. The time it takes to fix a
broken machine is a function of the complexity of the
breakdown, whether the repairman brought the proper
replacement parts and tools, whether the operator receives a
lesson in preventive maintenance etc.

To the model-builder, these occur by chance and cannot be
predicted, however, some statistical model might well describe
the time to make a repair.
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Review of Terminology and Concepts

Discrete Random Variables

If the number of possible values of X is finite or countably
infinite, X is called a discrete RV.

The possible values of X are given by the range space of X ,
denoted by RX . Here, RX = 0, 1, . . ..

Let X be a discrete RV. With each possible outcome xi in RX ,
a number, p(xi ) = P(X = xi ) gives the probability that the
RV equals the value of xi .

We have

p(xi ) ≥ 0 for all i∑∞
i=1 p(xi ) = 1

p(xi ) is called the probability mass function (PMF) of X .
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Review of Terminology and Concepts

Discrete Random Variables-cont.

Consider the experiment of tossing a single biased die. Define
X as the number of spots on the up face, RX = 1, 2, 3, 4, 5, 6.
Here, the probability that a given face lands up is proportional
to the number of spots showing. So, the discrete probability
distribution of of this experiment is given by

xi 1 2 3 4 5 6

p(xi ) 1/21 2/21 3/21 4/21 5/21 6/21
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Review of Terminology and Concepts

Discrete Random Variables-cont.
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Figure : PMF for the Die Example
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Review of Terminology and Concepts

Continuous Random Variables

Continuous Random Variables (Continuous RV): If the range
space RX of the RV X is an interval or a collection of
intervals, X is called a continuous RV.

We have

P(a ≤ X ≤ b) =

∫ b

a
f (x)dx

We also have

f (x) ≥ 0 for all x in RX∫
RX

f (x)dx = 1

f (x) = 0 if x is not in RX



System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

Review of Terminology and Concepts

Continuous Random Variables-cont.

f (x) is called the probability density function (PDF) of the
RV X . Also,

P(X = x0) =

∫ x0

x0

f (x)dx = 0

and,

P(a ≤ X ≤ b) = P(a < X ≤ b)

= P(a ≤ X < b)

= P(a < X < b)
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Review of Terminology and Concepts

Continuous Random Variables-cont.

x

f(x)

x 5 a x 5 b

Figure : Graphical Interpretation of P(a < X < b)
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Review of Terminology and Concepts

Continuous Random Variables-cont.

The life of a device used to inspect cracks in aircraft wings is
given by X , a continuous RV with a PDF of

f (x) =

{
1
2e

−x/2, x ≥ 0
0, otherwise

The probability that the life of the device is between 2 and 3
years is

P(2 ≤ X ≤ 3) =
1

2

∫ 3

2
e−x/2dx = −e−3/2 + e−1 = 0.145
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Review of Terminology and Concepts

Continuous Random Variables-cont.
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Figure : PDF for the Example Problem
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Review of Terminology and Concepts

Cumulative Distribution Function

The cumulative distribution function (CDF), denoted by F (x),
shows the probability that F (x) = P(X ≤ x).

If X is discrete,

f (x) =
∑

xi≤x

p(xi )

If X is continuous,

F (x) =

∫ x

−∞
f (t)dt
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Review of Terminology and Concepts

Cumulative Distribution Function-cont.

Some properties of the CDF are

F is a non-decreasing function.
limx→−∞ F (x) = 0
limx→∞ F (x) = 1

All probability questions about X can be answered in terms of
the CDF, such as

P(a < X ≤ b) = F (b)− F (a), for all a < b

Look at the examples in your text.
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Review of Terminology and Concepts

Expectation and Variance

Expectation of X if X is discrete,

E (X ) =
∑

i

xip(xi )

Expectation of X if X is continuous,

E (X ) =

∫ +∞

−∞
xf (x)dx

Variance of X (σ2,Var(X ),V (X ))

V (X ) = E
(
[X − E (X )]2

)
= E (X )2 − [E (X )]2
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Useful Statistical Models

Probability Distributions

Consider the single-server-queuing system. The arrivals and
service times might be deterministic or probabilistic.

We can use probability distributions to model the stochastic
features. For example, for service times

if the data are completely random, the exponential distribution
might be considered
if the data fluctuate from some value, the normal or the
truncated normal distribution might be used
the gamma and Weibull distributions can also be used to
model inter-arrival and service times

Some others, such as the geometric, Poisson and negative
binomial distributions might be considered for demand
distribution etc.
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Discrete Distributions

Bernoulli Distribution

Consider an experiment with n trials each of which can be a
success of failure with the corresponding probabilities. It is
called a Bernoulli process if the trials are independent and the
probability of success is the same for all trials. We have

pj(xj) = p(xj) =





p, xj = 1, j = 1, 2, . . . , n
1− p = q, xj = 0, j = 1, 2, . . . , n

0, otherwise

E (Xj) = 0× q + 1× p = p

V (Xj) = 02 × q + 12 × p − p2 = pq
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Discrete Distributions

Binomial Distribution

PDF

p(x) =

{ (n
x

)
pxqn−x , x = 0, 1, 2, . . . , n
0, otherwise

Expectation

E (X ) = np

Variance

V (X ) = npq
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Discrete Distributions

Binomial Distribution-Example

A production process manufactures computer chips that are
defective 2% of the time on average. Every day a random
sample of size 50 is taken from the process. If the sample
contains more than 2 defectives, the process is stopped.
Compute the probability of the process stopping.
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Discrete Distributions

Binomial Distribution-Example

If we let X be the number of defectives in the sample, then,
X have a binomial distribution with parameters
(n = 50, p = 0.02). Hence,

P(X > 2) = 1− P(X ≤ 2)

= 1−
2∑

x=0

(
50

x

)
(0.02)x(0.98)50−x

= 0.92
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Discrete Distributions

Binomial Distribution-Example

The mean number of defectives is

E (X ) = np = 50× 0.02 = 1

Variance

V (X ) = npq = 50× 0.02× 0.98 = 0.98
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Discrete Distributions

Geometric Distribution

PDF

p(x) =

{
pqx−1, x = 1, 2, . . .

0, otherwise

Expectation

E (X ) =
1

p

Variance

V (X ) =
q

p2
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Discrete Distributions

Negative Binomial Distribution

PDF

p(x) =

{ (y−1
k−1

)
pkqy−k , y = k , k + 1, k + 2, . . .

0, otherwise

Expectation

E (X ) =
k

p

Variance

V (X ) =
kq

p2
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Discrete Distributions

Geometric-Negative Binomial Distribution-Example

40% of the assembled ink-jet printers are rejected at the
inspection station. Find the probability that the first
acceptable ink-jet printer is the third one inspected.

If we let X be the number of trials to achieve the first success
(acceptable printer),

p(3) = (0.4)2(0.6) = 0.096

The probability that the third printer inspected is the second
acceptable printer is

p(3) =

(
3− 1

2− 1

)
(0.4)3−2(0.6)2 = 0.288
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Discrete Distributions

Poisson Distribution

PDF and CDF

p(x) =

{
e−ααx

x! , x = 0, 1, 2, . . .
0, otherwise

F (X ) =
x∑

i=0

e−ααi

i !

Expectation and Variance

E (X ) = α

V (X ) = α
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Discrete Distributions

Poisson Distribution-cont.
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Figure : Poisson PMF and CDF
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Discrete Distributions

Poisson Distribution-Example

A computer repairman is “beeped” each time there is a call
for service. The number of beeps per hour is a Poisson RV
with a mean of α = 2 per hour. The probability of 3 beeps in
the next hour is given by

p(3) =
e−2(2)3

3!
= 0.18 = F (3)− F (2) = 0.857− 0.677

The probability of 2 or more beeps in a 1-hour period is

P(X ≥ 2) = 1− P(X < 2) = 1− F (1) = 0.594
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Continuous Distributions

Uniform Distribution

PDF and CDF

f (x) =

{
1

b−a , a ≤ x ≤ b

0, otherwise

F (X ) =





0, x < a
x−a
b−a , a ≤ x < b

1, x ≥ b

Expectation and Variance

E (X ) =
a+ b

2

V (X ) =
(b − a)2

12
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Continuous Distributions

Uniform Distribution-cont.
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Figure : Uniform PDF and CDF
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Continuous Distributions

Exponential Distribution

PDF and CDF

f (x) =

{
λe−λx , x ≥ 0

0, otherwise

F (X ) =

{
1− e−λx , x ≥ 0

0, otherwise

Expectation and Variance

E (X ) =
1

λ

V (X ) =
1

λ2
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Continuous Distributions

Exponential Distribution-cont.

One of the most important properties of the exponential
distribution is that it is “memoryless”, which means, for all
s ≥ 0 and t ≥ 0,

P(X > s + t|X > s) = P(X > t)

=
P(X > s + t)

P(X > s)

=
e−λ(s+t)

e−λs

= e−λt

= P(X > t)
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Continuous Distributions

Exponential Distribution-cont.
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Figure : Uniform PDF and CDF
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Continuous Distributions

Exponential Distribution-cont.
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Figure : PDFs for Several Exponentials
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Continuous Distributions

Exponential Distribution-Example

The life time of a lamp, in thousand hours, is exponentially
distributed with failure rate λ = 1/3. Find the probability that
the lamp will last for another 1,000 hours given that it is
working after 2,500 hours.

P(X > 3.5|X > 2.5) = P(X > 1)

= e−1/3

= 0.717
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Continuous Distributions

Gamma Distribution

PDF and CDF

f (x) =

{
βθ
Γ(β)(βθx)

β−1e−βθx , x > 0

0, otherwise

F (X ) =

{
1−

∫∞
x

βθ
Γ(β)(βθt)

β−1e−βθtdt, x > 0

0, otherwise

Expectation and Variance

E (X ) =
1

θ

V (X ) =
1

βθ2
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Continuous Distributions

Gamma Distribution-cont.

Gamma Function

Γ(β) =

∫ ∞

0
xβ−1e−xdx

We can show that

Γ(β) = (β − 1)!

When β = k , the distribution is called as the Erlang
distribution of order k .
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Continuous Distributions

Gamma Distribution-cont.
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Figure : PDFs for Several Gammas
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Continuous Distributions

Normal Distribution

PDF and CDF

f (x) = 1√
2πσ2

exp
[
− (x−µ)2

2σ2

]
, −∞ < x < ∞

F (X ) =
∫ x
−∞

1√
2πσ2

exp
[
− (t−µ)2

2σ2

]
dt, −∞ < x < ∞

It is difficult to compute the above integral analytically. We
can do it numerically, but it would be dependent on the mean
and the variance. Not to be so, we can transform it to
standard normal distribution.
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Continuous Distributions

Normal Distribution-cont.

Let z = (t − µ)/σ. Then,

F (X ) = P(X ≤ x) = P

(
Z ≤ x − µ

σ

)

=

∫ (x−µ)/σ

−∞

1√
2π

exp

(
−z2

2

)
dz

=

∫ (x−µ)/σ

−∞
φ(z)dz

= Φ

(
x − µ

σ

)
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Continuous Distributions

Normal Distribution-cont.

Hence, X N(µ, σ2) and Z N(0, 1). The PDF of Z is

φ(z) = 1√
2π

exp
(
− z2

2

)
, −∞ < x < ∞

The CDF is computed and tabulated for use.

Φ(z) =

∫ z

−∞

1√
2π

exp

(
− t2

2

)
dt
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Continuous Distributions

Normal Distribution-cont.

f(x)

m

Figure : PDF for Normal
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Continuous Distributions

Normal Distribution-cont.
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Figure : PDF for Standard Normal
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Continuous Distributions

Normal Distribution-cont.
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f(z)

m 5 0

s2 5 1

(b)

2

f(x)

m 5 50 x

(a)

x0 5 56

s2 5 9

Figure : from Normal to Standard Normal
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Continuous Distributions

Normal Distribution-Example

X is approximated by a normal distribution with mean 25 and
variance 9. Compute the value for X that will be exceeded
only 5% of the time.

P(X > x0) = P

(
Z >

x0 − 25

3

)
= 1− Φ

(
x0 − 25

3

)

Hence,

1− Φ

(
x0 − 25

3

)
= 0.05 ⇒ Φ

(
x0 − 25

3

)
= 0.95

Φ(1.645) = 0.95 ⇒ x0 − 25

3
= 1.645 ⇒ x0 = 29.935
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Continuous Distributions

Normal Distribution-Example
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Figure : Normal Distribution Example
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Continuous Distributions

Weibull Distribution-cont.

PDF and CDF

f (x) =

{
β
α

(
x−v
α

)β−1
exp

[
−
(
x−v
α

)β]
, x ≥ v

0, otherwise

F (X ) =

{
1− exp

[
−
(
x−v
α

)β]
, x ≥ v

0, otherwise
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Continuous Distributions

Weibull Distribution-cont.
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Figure : Several PDFs for Weibull

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

Continuous Distributions

Weibull Distribution-cont.

Expectation and Variance

E (X ) = v + αΓ

(
1

β
+ 1

)

V (X ) = α2

(
Γ

(
2

β
+ 1

)
−
[
Γ

(
1

β
+ 1

)]2)
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Continuous Distributions

Triangular Distribution

PDF and CDF

f (x) =





2(x−a)
(b−a)(c−a) , a ≤ x ≤ b

2(c−x)
(c−b)(c−a) , b < x ≤ c

0, otherwise

F (X ) =





0, x ≤ a
(x−a)2

(b−a)(c−a) , a < x ≤ b

1− (c−x)2

(c−b)(c−a) , b < x ≤ c

1, x > c
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Continuous Distributions

Triangular Distribution-cont.

x
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Figure : PDF for Triangular
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Continuous Distributions

Triangular Distribution-cont.
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Figure : Mode, Median and Mean
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Continuous Distributions

Lognormal Distribution

PDF

f (x) =





1√
2πσx

exp
[
− (ln x−µ)2

2σ2

]
, x ≥ 0

2(c−x)
(c−b)(c−a) , b < x ≤ c

0, otherwise

Expectation and Variance

E (X ) = eµ+σ2/2

V (X ) = e2µ+σ2
(eσ

2 − 1)
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Continuous Distributions

Lognormal Distribution-cont.
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Figure : PDF for Lognormal
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Continuous Distributions

Beta Distribution

PDF

f (x) =

{
xβ1−1(1−x)β2−1

B(β1,β2)
, 0 < x < 1

0, otherwise

where
B(β1, β2) = Γ(β1)Γ(β2)/Γ(β1 + β2)
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Continuous Distributions

Beta Distribution-cont.
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Figure : Several PDFs for Beta
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Poisson Process

Poisson Process

The counting process {N(t), t ≥ 0} is said to be a Poisson process
with mean rate λ if

arrivals occur one at a time

{N(t), t ≥ 0} has stationary increments

{N(t), t ≥ 0} has independent increments

We can show that

P[N(t) = n] = e−λt(λt)n

n! for t ≥ 0 and n = 0, 1, 2, . . .

which is a Poisson distribution with parameter α = λt. Hence, the
mean and variance are both α = λt. We can show that the
inter-arrival times are exponential.
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Empirical Distributions

Empirical Distributions

An empirical distribution might be discrete or continuous.

Its parameters are the observed values in a sample dataset.

We might use an empirical distribution when it is not possible
or not necessary to establish an RV has a particular
parametric distribution.

One advantage of an empirical distribution is that no
assumption is needed beyond the observed values, but it is
also a disadvantage because the sample might not cover the
entire range of possible values.
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Summary

Summary

Reading HW: Chapter 5.

Chapter 5 Exercises.


