System Simulation Chapter 2: Simulation Examples

Fatih Cavdur fatihcavdur@uludag.edu.tr

March 29, 2014

Introduction

- Several examples of simulation that can be performed by devising a simulation table either manually or with a spreadsheet.
- The simulation table provides a systematic method for tracking system state over time.
- These examples provide insight into the methodology of discrete-system simulation and the descriptive statistics used for predicting system performance.

Introduction - cont.

The simulations in this chapter are carried out by following three steps:

- Determine the characteristics of each of the inputs to the simulation. Quite often, these are modeled as (discrete continuous) probability distributions.
- Construct a simulation table. Each table is different based on the problem of interest. In the example simulation table in your text there are p inputs, x_{ij} , j = 1, 2, ..., p, and one response, y_i for each repetition i, i = 1, 2, ..., n.
- For each repetition *i*, generate a value for each of the *p* inputs, and evaluate the function calculating a value of the response *y_i*.

Introduction - cont.

The simulations examples in this chapter are in

- queuing (two examples with one and two servers)
- inventory
- reliability
- network analysis

Single-Cl	nannel Queue	9		
	Table : Dis	tribution c	of Time Between	Arrivals
	Time Between Arrivals	Probability	Cumulative Probability	Random Digits
	1	0.125	0.125	001 - 125
	2	0.125	0.250	126 - 250
	3	0.125	0.375	251 - 375
	4	0.125	0.500	376 - 500
	5	0.125	0.625	501 - 625
	6	0.125	0.750	626 - 750
	7	0.125	0.875	751 - 875
	8	0.125	1.000	876 - 000

Single-Chan	inel Que	eue - co	ont.		
	Ta	ble : Serv	vice-Time Distribu	ition	
-	Sonvice Time	Brobabilit	Cumulative Probability	Pandom Digita	
-	1	0.10			
	2	0.10	0.10	11 - 30	
	3	0.30	0.60	31 - 60	
	4	0.25	0.85	61 - 85	
	5	0.10	0.95	86 - 95	
	6	0.05	1.00	96 - 00	

ingle-C	ha	a	nnel	Que	eue -	cor	ıt.				
		А	В	C	D	F	F	G	н	1	J
	15	Ĥ	TOTALS	420	5	320		163		483	106
	16	H	AVERAGES	4.24		3.20		1.63		4.83	1.07
	17	H		Number of	Customers-	100					
		H									
	18	Н	Oters	A	Olash	A shirely a	Simulat	ion Table	Oleals	Outrust	Quitaut
	19	H	Step	ACTIVITY	CIOCK	ACTIVITY	CIOCK	Output	CIOCK	Output	Output
	20	H		Interarrival		Service	Time	Waiting Time	Time	Time Customer	Idle Time
	21	\square		Time		Time	Service	in Queue	Service	Spends in System	of Server
	22	Н	Customer	(Minutes)	Arrival Time	(Minutes)	Beains	(Minutes)	Ends	(Minutes)	(Minutes)
	23		1	5	5	2	0	0	2	2	2
	24	H	2	5	10	4	10	0	14	2	3
	26	H	4	4	14	4	14	0	18	4	0
	27	H	5	2	16	3	18	2	21	5	0
	28	1	6	8	24	2	24	0	26	2	3
		1	7	7	31	3	31	0	34	3	5
	29							0	4.4	F	-
	29 30		8	8	39	5	- 39	0	44	3	5
	29 30 31		8 9	8 5	39 44	5	39 44	0	44 45	1	0
	29 30 31 32		8 9 10	8 5 2	39 44 46	5 1 6	39 44 46	0	44 45 52	1 6	0

Single-Channel Queue - cont.

• proportion of idle - busy time of the server

probability (server idle) = $\frac{\text{total idle time of server}}{\text{total run time}}$ = $\frac{101}{418}$ = 0.24 probability (server busy) = 1 - probability (server idle) = 1 - 0.24 = 0.76

Single-Channel Queue - cont. • average versus expected service times $average service time = \frac{\text{total service time}}{\text{total number of customers}}$ $= \frac{317}{100}$ = 3.17 $E(S) = \sum_{s=0}^{\infty} sp(s) = 1(.10) + 2(.20) + \ldots + 6(.05) = 3.2$ • They will get closer to each other if we simulate longer.

Single-Channel Queue - cont.

• average versus expected time between arrivals

• Again, they will get closer to each other if we simulate longer.

Able-Baker Call	Center Problem
-----------------	----------------

	В	С	D
4	Interarriv	al Distributio	n of Calls
5	Interarrival		Cumulativa
6	Time	Probability	Probability
7	(Minutes)		FIODADIIIty
8	1	0.25	0.25
9	2	0.40	0.65
10	3	0.20	0.85
11	4	0.15	1.00

Figure : Distribution of Time Between Arrivals

Able-Baker Ca	II C	Center Pi	roblem - d	cont.	
		F	G	Н	
	4	Able's Se	ervice Time D	Distribution	
	5 6	Service Times	Probability	Cumulative Probability	
	7	(Minutes)		FIODADIIIty	
	8	2	0.30	0.30	
	9	3	0.28	0.58	
	10	4	0.25	0.83	
	11	5	0.17	1.00	
Figure :	Free	quency Dist	ribution of A	verage Waitin	g Times

Able-Baker	Call	Center	Problem	-	cont.
------------	------	--------	---------	---	-------

	I	J	K
4	Baker's S	ervice Time	Distribution
5	Service		Cumulativa
6	Times	Probability	Brobability
7	(Minutes)		FIODADIIIty
8	3	0.35	0.35
9	4	0.25	0.60
10	5	0.20	0.80
11	6	0.20	1.00

Figure : Frequency Distribution of Average Waiting Times

8CDEFGHIJKLM10Number of Callers100Seed for Random Number12.3457343210Simulation Table10Simulation Table10Integrative driveClock
13 100 ALIS 1
14 Number of Callerse 100 Seed for Random Numbers 12,345 Image: Constraint of Callerse 15 Step Activity Clock Clock Clock Clock Clock Clock Output Output 16 Step Activity Clock Clock Clock Clock Clock Clock Output 17 Interarrival Arrival When Stere Service Time Service Clock Clock Clock (Minutes) Baker Alle Baker Alle Baker Alle Baker Alle Baker Alle A
15 Sine Activity Clock Clock Clock State Activity Clock Clock Output Output 16 Output
10StepActivityClockClockClockStateActivityClockClockOutputOutput17CallerTimeWhenWhenServiceServiceTimeServiceTimeTime18CallerTimeTimeArrivalArrivalAvailableServiceServiceTimeCaller DelySystem19Number11445ServiceTimeCaller DelySystem201145AbleServiceTimeCaller DelySystem21231245AbleServiceTimeCaller Dely2231245Able347252343575Baker358032452778Able571205256291885914052671101214Able51217272894161718Baker3182113281011718Baker3182114291011718Baker318211429
17 Caller Interarival Munder Arrival Time When Available Server Available Server Chosen (Minutes) Server Begin Server Minutes) Server Begin Server Minutes) Server Begin Server Able Server Babe Server Able Server Babe Server Able Server Babe Server Able Server Babe Server Able Server Babe Server Babe Server Able Server Babe Server Able Server Babe Server Able Server Babe Server Able Serv
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Figure : Simulation Table
Figure : Simulation Table

Newsboy Problem				
Table :	Newsp	aper De	mand [Distributi
De	emand	Good	Fair	Poor
	40	0.03	0.10	0.44
	50	0.05	0.18	0.22
	60	0.15	0.40	0.16
	70	0.20	0.20	0.12
	80	0.35	0.08	0.06
	90	0.15	0.04	0.00
	100	0.07	0.00	0.00

	В	С	D	F	F	G	н		
4)istribution o	of Newspape	rs Demande	ed 🖉			
5		Demand Probabilities				Cumulative Probabilities			
6	Demand	Good	Fair	Poor	Good	Fair	Poor		
7	40	0.03	0.10	0.44	0.03	0.10	0.44		
8	50	0.05	0.18	0.22	0.08	0.28	0.66		
9	60	0.15	0.40	0.16	0.23	0.68	0.82		
10	70	0.20	0.20	0.12	0.43	0.88	0.94		
11	80	0.35	0.08	0.06	0.78	0.96	1.00		
12	90	0.15	0.04	0.00	0.93	1.00	1.00		
	100	0.07	0.00	0.00	1 00	1 00	1 00		

Order Up-To-Level Inventory System

Inputs

- Little m
- Big M
- Demand Distribution
- Lead Time
- Outputs (Performance Measures)
 - Total Cost
 - Average Inventory Level
 - What else?

		ory Syste	m
	В	С	D
4	Distrib	ution of Daily	Demand
5	Demand	Probability	Cumulative
6			Probability
7	0	0.10	0.10
8	1	0.25	0.35
9	2	0.35	0.70
10	3	0.21	0.91
		0.09	1 00
11	4	0.00	1.00

Order Up-To-Level Inventory System - cont.								
		F	G	Н				
	4	Distribution of Lead Time						
	5	Lead Time	Probability	Cumulative				
	6	(days)		Probability				
	7	1	0.60	0.60				
	8	2	0.30	0.90				
	9	3	0.10	1.00				
		Figure : Lead Time						

Other Examples

- A Reliability problem (Example 2.5)
- Random Normal Numbers (Example 2.6)
- Lead Time Demand (Example 2.7)
- Project Simulation (Example 2.8)

A Reliability Problem

- Inputs
 - Bearing Life
 - Delay Time
- Outputs (Performance Measures)
 - Total Cost

Λ	Dal	linhi	Li+v.	Droh	lam
A	I/G	Iabi	пιу	FIOD	lem

	В	С	D				
3	Distribution of Bearing-Life						
4	Bearing	Probability	Cumulative				
5	Life		Probability				
6	1000	0.10	0.1				
7	1100	0.13	0.23				
8	1200	0.25	0.48				
9	1300	0.13	0.61				
10	1400	0.09	0.70				
11	1500	0.12	0.82				
12	1600	0.02	0.84				
13	1700	0.06	0.90				
14	1800	0.05	0.95				
15	1900	0.05	1.00				

A Reliability Problem

- When a break-down occurs, we call the repairman to fix it.
- Downtime cost for the mill is \$10 per minute.
- Cost of the repairman is \$30 per hour.
- It takes 20 minutes to replace 1 bearing, 30 minutes to replace 2 bearings and 40 minutes to replace 3 bearings.
- Current Method: We replace a bearing whenever it breaks-down.
- Proposed Method: We replace "all bearings" whenever one of them breaks-down.
- Which one is better?

A Reliability Problem-cont.

For 15 bearing changes, we have

- Cost of bearings = $45 \times 32 = \$1,440$
- Cost of delay time = $(110 + 110 + 105) \times 10 =$ \$3,250
- Cost of downtime = $45 \times 20 \times 10 =$ \$9,000
- Cost of repairman = $45 \times 20 \times 30/60 =$ \$450
- Total cost = 1,440 + 3,250 + 9,000 + 450 = \$14,140.

A Reliability Problem-cont.

For 15 bearing changes, we have

- Cost of bearings = $45 \times 32 = \$1,440$
- Cost of delay time = $110 \times 10 =$ \$1,100
- Cost of downtime = $15 \times 40 \times 10 =$ \$6,000
- Cost of repairman = $15 \times 40 \times 30/60 =$ \$300
- Total cost = 1,440 + 1,100 + 6,000 + 300 =\$8,840.

Random Normal Numbers

Simulate a bombin operation as follows:

- If a bomb falls anywhere on target it is hit, otherwise it is a miss.
- The aiming point is (0,0).
- The point is impact is normally distributed around the aiming point with a standard deviation of 400 and 200 meters in x and y directions, respectively.
- Simulate the operation for 10 bombs.

Random Normal Numbers-cont.

Since

$$Z = \frac{X - \mu_X}{\sigma_X}, \quad Z = \frac{Y - \mu_Y}{\sigma_Y}$$

we can write

$$X = \mu_X + Z\sigma_X = 0 + 400Z, \quad Y = \mu_Y + Z\sigma_Y = 0 + 200Z$$

